【題目】已知,
(1)求在處的切線方程以及的單調性;
(2)對,有恒成立,求的最大整數解;
(3)令,若有兩個零點分別為,且為的唯一的極值點,求證:.
【答案】(1)切線方程為;單調遞減區(qū)間為,單調遞增區(qū)間為(2)的最大整數解為(3)證明見解析
【解析】
(1)求出函數的導數,求出,即可得到切線方程,解得到單調遞增區(qū)間,解得到單調遞減區(qū)間,需注意在定義域范圍內;
(2)等價于,求導分析的單調性,即可求出的最大整數解;
(3)由,求出導函數分析其極值點與單調性,構造函數即可證明;
解:(1)
所以定義域為
;
;
所以切線方程為;
,
令解得
令解得
所以的單調遞減區(qū)間為,單調遞增區(qū)間為.
(2)等價于;
,
記,,所以為上的遞增函數,
且,,所以,使得
即,
所以在上遞減,在上遞增,
且;
所以的最大整數解為.
(3),得,
當,,,;
所以在上單調遞減,上單調遞增,
而要使有兩個零點,要滿足,
即;
因為,,令,
由,,
即:,
而要證,
只需證,
即證:
即:由,只需證:,
令,則
令,則
故在上遞增,;
故在上遞增,;
.
科目:高中數學 來源: 題型:
【題目】某公司準備上市一款新型轎車零配件,上市之前擬在其一個下屬4S店進行連續(xù)30天的試銷.定價為1000元/件.試銷結束后統(tǒng)計得到該4S店這30天內的日銷售量(單位:件)的數據如下表:
日銷售量 | 40 | 60 | 80 | 100 |
頻數 | 9 | 12 | 6 | 3 |
(1)若該4S店試銷期間每個零件的進價為650元/件,求試銷連續(xù)30天中該零件日銷售總利潤不低于24500元的頻率;
(2)試銷結束后,這款零件正式上市,每個定價仍為1000元,但生產公司對該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價為550元/件;小箱每箱有45件,批發(fā)價為600元/件.該4S店決定每天批發(fā)兩箱,根據公司規(guī)定,當天沒銷售出的零件按批發(fā)價的9折轉給該公司的另一下屬4S店.假設該4店試銷后的連續(xù)30天的日銷售量(單位:件)的數據如下表:
日銷售量 | 50 | 70 | 90 | 110 |
頻數 | 5 | 15 | 8 | 2 |
(ⅰ)設該4S店試銷結束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤;
(ⅱ)以總利潤作為決策依據,該4S店試銷結束后連續(xù)30天每天應該批發(fā)兩大箱還是兩小箱?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,,,,若.
⑴ 求函數的最小正周期和單調遞增區(qū)間;
⑵ 將函數的圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),再將得到的圖象向左平移個單位,得到函數的圖象,求函數在上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)已知過原點的動直線與圓 相交于不同的兩點,.
(1)求圓的圓心坐標;
(2)求線段的中點的軌跡的方程;
(3)是否存在實數,使得直線 與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側棱垂直于底面,各頂點都在同一球面上,若該棱柱的體積為,AB=2,AC=1,∠BAC=60°,則此球的表面積等于( )
A.8πB.9πC.10πD.11π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙、丁、戊5個文藝節(jié)目在三家電視臺播放,要求每個文藝節(jié)目只能獨家播放,每家電視臺至少播放其中的一個,則不同的播放方案的種數為( )
A.150B.210C.240D.280
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報名,其中報名的醫(yī)生18人,護士12人,醫(yī)技6人,根據需要,從中抽取一個容量為n的樣本參加救援隊,若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當抽取n+1人時,若采用系統(tǒng)抽樣,則需剔除1個報名人員,則抽取的救援人員為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com