(2013•天津)已知首項為的等比數(shù)列{an}不是遞減數(shù)列,其前n項和為Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設,求數(shù)列{Tn}的最大項的值與最小項的值.

(1)an=(﹣1)n﹣1
(2)數(shù)列{Tn}的最大項的值為,最小項的值為

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

等差數(shù)列的前n項和為,已知,為整數(shù),且.
(1)求的通項公式;
(2)設,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設滿足以下兩個條件得有窮數(shù)列階“期待數(shù)列”:
,②.
(1)若等比數(shù)列階“期待數(shù)列”,求公比;
(2)若一個等差數(shù)列既為階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記階“期待數(shù)列”的前項和為.
)求證:;
)若存在,使,試問數(shù)列是否為階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列的首項,公差,等比數(shù)列滿足
(1)求數(shù)列的通項公式;
(2)設數(shù)列對任意均有,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列為等差數(shù)列,且,,數(shù)列的前項和為
(1)求數(shù)列,的通項公式; 
(2)若,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知{an}是公比為q的等比數(shù)列,且am、am+2、am+1成等差數(shù)列.
(1)求q的值;
(2)設數(shù)列{an}的前n項和為Sn,試判斷Sm、Sm+2、Sm+1是否成等差數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和,數(shù)列滿足  
(1)求數(shù)列的通項;
(2)求數(shù)列的通項
(3)若,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和,數(shù)列滿足
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設等差數(shù)列的前n項和為,且,
(1).求數(shù)列的通項公式;
(2).若成等比數(shù)列,求正整數(shù)n的值.

查看答案和解析>>

同步練習冊答案