合肥市環(huán)保總站對2013年11月合肥市空氣質(zhì)量指數(shù)發(fā)布如圖趨勢圖.
AQI指數(shù) 天數(shù)
(60,120]  
(120,180]  
(180,240]  
(240,300]  
(Ⅰ)請根據(jù)如圖所示趨勢圖,完成表并根據(jù)表畫出頻率分布直方圖,
(Ⅱ)試根據(jù)頻率分布直方圖估計(jì)合肥市11月份AQI指數(shù)的平均值.
考點(diǎn):頻率分布直方圖,眾數(shù)、中位數(shù)、平均數(shù)
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(I)根據(jù)趨勢圖數(shù)出數(shù)值在各組的頻數(shù),作出分布表,再根據(jù)小矩形的高=
頻數(shù)
樣本容量
得各個(gè)小矩形的高,由此可作出頻率分布直方圖;
(II)根據(jù)平均數(shù)為各個(gè)小矩形底邊中點(diǎn)的橫坐標(biāo)乘以對應(yīng)小矩形的面積之和計(jì)算可得數(shù)據(jù)的平均數(shù).
解答: 解:(I)根據(jù)趨勢圖可得:
AQI指數(shù) 天數(shù)
(60,120]   11 
(120,180]  11
(180,240]  5
(240,300]  3
根據(jù)小矩形的高=
頻數(shù)
樣本容量
得頻率分布直方圖如圖:

(II)合肥市11月份AQI指數(shù)的平均值
.
x
=
11
30
×90+
11
30
×150+
5
30
×210+
3
30
×270=150.
點(diǎn)評:本題考查了頻率分布直方圖的作法,根據(jù)頻率分布直方圖中頻率=
頻數(shù)
樣本容量
=小矩形的高×組距來獲得數(shù)據(jù),是解答此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=34,橢圓C:
x2
25
+
y2
9
=1.
(Ⅰ)若點(diǎn)P在圓O上,線段OP的垂直平分線經(jīng)過橢圓的右焦點(diǎn),求點(diǎn)P的橫坐標(biāo);
(Ⅱ)現(xiàn)有如下真命題:“過圓x2+y2=52+32上任意一點(diǎn)Q(m,n)作橢圓
x2
52
+
y2
32
=1的兩條切線,則這兩條切線互相垂直”;“過圓x2+y2=42+72上任意一點(diǎn)Q(m,n)作橢圓
x2
42
+
y2
72
=1的兩條切線,則這兩條切線互相垂直”.據(jù)此,寫出一般結(jié)論,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)在平面xoy內(nèi),不等式x2+y2≤4確定的平面區(qū)域?yàn)閁,不等式組
x-2y≥0
x+3y≥0
確定的平面區(qū)域?yàn)閂.
(1)定義橫、縱坐標(biāo)均為非負(fù)整數(shù)的點(diǎn)為“非負(fù)整點(diǎn)”.在區(qū)域U中任取2個(gè)“非負(fù)整點(diǎn)”,求這些“非負(fù)整點(diǎn)”中恰好有1個(gè)“非負(fù)整點(diǎn)”落在區(qū)域V中的概率;
(2)在區(qū)域U中任取一個(gè)點(diǎn),求這個(gè)點(diǎn)恰好在區(qū)域V內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若
a
=(1,0),
b
=(-1,1),
c
=
a
+(
a
b
b
,求|
c
|;
(2)已知|
a
|=1,|
b
|=
3
,|
a
+
b
|=1,求
a
b
夾角θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x-
x

(Ⅰ)判斷
f(x)
x
的單調(diào)性;
(Ⅱ)求函數(shù)y=f(x)的零點(diǎn)的個(gè)數(shù);
(Ⅲ)令g(x)=
ax2+ax
f(x)+
x
+lnx,若函數(shù)y=g(x)在(0,
1
e
)內(nèi)有極值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x-y-2≤0
x+2y-5≥0
y-2≤0
,則z=
2x+y
x
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=loga(x-3)-1的圖象恒過與a無關(guān)的定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式f(x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f(
b
a
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只昆蟲在邊長分別為5,12,13的三角形區(qū)域內(nèi)隨機(jī)爬行,則其到三角形頂點(diǎn)的距離小于2的地方的概率為
 

查看答案和解析>>

同步練習(xí)冊答案