曲線y2-x-2y=0在二階矩陣M=
1 a
b 1
的作用下變換為曲線y2=x;
(i)求實數(shù)a,b的值;
(ii)求M的逆矩陣M-1
考點:幾種特殊的矩陣變換,逆矩陣與二元一次方程組
專題:矩陣和變換
分析:(1)利用矩陣變換可得
x′=x+ay
y′=bx+y
,代入新曲線y2=x,即可求得實數(shù)a,b的值;
(2)利用|M|=1及逆矩陣公式即可求得M的逆矩陣M-1
解答: (本小題滿分7分)選修4-2:矩陣與變換
解:(1)由
1 a
b 1
x
y
=
x′
y′
得:
x′=x+ay
y′=bx+y

代入新曲線y2=x,得(bx+y)2=x+ay,即y2+2bxy+b2x2-x-ay=0
解得a=2,b=0,M=
1 2
0 1
…(4分)
(2)由(1)知M=
1 2
0 1
,|M|=1×1-0×2=1,其伴隨矩陣M*=
1 -2
0  1
(主對角線對換,副對角線符號相反),
由M-1=
M*
|M|
得:M-1=
1 -2
0  1
…(7分)
點評:本題考查矩陣變換及逆矩陣公式的應用,考查運算求解能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知命題p:x2-x≥6,q:x∈Z,“p∧q”與“?q”同時為假命題,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-7≤2x-1≤9},B={x|m-2<x<2m-3},且A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,3,5,7,9},B={0,3,6,9,12},則A∩(∁NB)=(  )
A、{1,2,3}
B、{1,3,9}
C、{1,5,7}
D、{3,5,7}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-x-1,(x≤0)
f(x-1),(x>0)
,若方程f(x)=ax-1(a>0)有且只有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
ax2+2ax+1
的值域為[0,+∞),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是拋物線y2=4x上的動點,點P在y軸上的射影是M,點A 的坐標是(4,a),則當|a|>4時,|PA|+|PM|的最小值是( 。
A、
a2+9
B、
a2+9
-1
C、a+3
D、
a2+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
f′(x)
x
的圖象如圖所示(其中f′(x)是定義域為R函數(shù)f(x)的導函數(shù)),則以下說法錯誤的是( 。
A、f′(1)=f′(-1)=0
B、當x=-1時,函數(shù)f(x)取得極大值
C、方程xf′(x)=0與f(x)=0均有三個實數(shù)根
D、當x=1時,函數(shù)f(x)取得極小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,函數(shù)f(x)=
x2
2
+2a(a+1)1nx-(3a+1)x.
(1)若函數(shù)f(x)在x=l處的切線與直線y-3x=0平行,求a的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習冊答案