已知等差數(shù)列{an}中,公差d=-4,a2,a3,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前k項和Sk=-96,求k的值.
分析:(1)依題意,可求得a1=2,而公差d=-4,從而可求數(shù)列{an}的通項公式;
(2)由(1)知,an=-4n+6,于是可求Sn=-2n2+4n,而Sk=-96,于是-2k2+4k=-96(k∈N*),從而可求得k的值.
解答:解:(1)∵a2,a3,a6,成等比數(shù)列,
a32=a2•a6,即(a1+2d)2=(a1+d)(a1+5d),
∵d=-4,
(a1-8)2=(a1-4)(a1-20),
解得a1=2,
∴an=-4n+6.
(2)由(1)可知an=-4n+6,
∴Sn=
n(2-4n+6)
2
=-2n2+4n,
由Sk=-96,
∴-2k2+4k=-96,即k2-2k-48=0,解得k=8或k=-6,
又k∈N*,
故k=8為所求.
點評:本題考查數(shù)列的求和,著重考查等差數(shù)列的通項公式與等比數(shù)列的通項公式及等差數(shù)列的求和公式的綜合應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案