設(shè)集合A={x|a-2<x<a+2},B={x|-2<x<3},若A?B,求實數(shù)a的取值范圍.
考點:集合的包含關(guān)系判斷及應(yīng)用
專題:高考數(shù)學專題,集合
分析:本題是不等式和集合包含關(guān)系的題目,需要認清兩個集合的真包含關(guān)系,求出a的取值范圍.
解答: 解:∵A={x|a-2<x<a+2},B={x|-2<x<3},且A?B
只需滿足不等式組,
a+2<3
a-2>-2

解得:0<a<1,
∴實數(shù)a的取值范圍為(0,1).
點評:本題主要考查集合的基本運算,屬于基礎(chǔ)題.要正確判斷兩個集合間的關(guān)系,必須對集合的相關(guān)概念有深刻的理解,善于抓住代表元素,認清集合的特征.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=3sin(2x+φ)的圖象關(guān)于點(
4
3
π
,0)中心對稱,那么φ的可能值為(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點C(0,
3
)的橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,橢圓與x軸交于A(a,0)和B(-a,0)兩點,過點C的直線l與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q.
(Ⅰ)當直線l過橢圓的右焦點時,求線段CD的長;
(Ⅱ)當點P異于點B時,求證:
OP
OQ
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2+ax-6a2≤0},B={x||x-2|<1},若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(
3
sinαωx,cosωx),
n
=(cosωx,-cosωx)(ω>0)函數(shù)f(x)=
m
n
的最小正周期為
π
2

(Ⅰ)求ω的值;
(Ⅱ)設(shè)△ABC的三邊a、b、c滿足b2=ac,且邊b所對的角為x,若關(guān)于x的方程f(x)=k有兩個不同的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:k2-8k-20≤0,命題q:方程
x2
4-k
+
y2
1-k
=1表示焦點在x軸上的雙曲線.
(Ⅰ)命題q為真命題,求實數(shù)k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A={x|x2-3x+2=0},B={x|ax-2=0},若B⊆A,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線的頂點是原點,對稱軸為坐標軸,且拋物線過點M(1,2).
(1)求拋物線的標準方程;
(2)若拋物線的對稱軸為x軸,過點N(13,-2)的直線交拋物線于A,B兩點,設(shè)直線MA,MB的斜率分別為k1,k2,求k1•k2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,a-1},B={2,3},且A∩B={3},則實數(shù)a的值為
 

查看答案和解析>>

同步練習冊答案