【題目】已知圓,直線過點(diǎn).
(1)若直線與圓相切,求直線的方程;
(2)若直線與圓交于兩點(diǎn),當(dāng)的面積最大時(shí),求直線的方程.
【答案】(1)或;(2)或.
【解析】
(1)分直線l的斜率不存在與直線l的斜率存在兩種討論,根據(jù)直線l與圓M相切進(jìn)行計(jì)算,可得直線的方程;
(2)設(shè)直線l的方程為,圓心到直線l的距離為d,可得的長,由的面積最大,可得,可得k的值,可得直線的方程.
解:(1)當(dāng)直線l的斜率不存在時(shí),直線l的方程為,此時(shí)直線l與圓M相切,所以符合題意 ,
當(dāng)直線l的斜率存在時(shí),設(shè)l的斜率為k,
則直線l的方程為,
即 ,
因?yàn)橹本l與圓M相切,所以圓心到直線的距離等于圓的半徑,
即,
解得,即直線l的方程為;
綜上,直線l的方程為或,
(2)因?yàn)橹本l與圓M交于P.Q兩點(diǎn),所以直線l的斜率存在,
可設(shè)直線l的方程為,圓心到直線l的距離為d ,
則 ,
從而的面積為·
當(dāng)時(shí),的面積最大 ,
因?yàn)?/span>,
所以,
解得或,
故直線l的方程為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,,,,點(diǎn)為棱的中點(diǎn),
(1)證明:;
(2)若點(diǎn)為棱上一點(diǎn),且,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求的值域;
(2)當(dāng)時(shí),求的最小值;
(3)當(dāng)時(shí),若,都,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店每天做若干個(gè)生日蛋糕,每個(gè)制作成本為50元,當(dāng)天以每個(gè)100元售出,若當(dāng)天白天售不出,則當(dāng)晚以30元/個(gè)價(jià)格作普通蛋糕低價(jià)售出,可以全部售完.
(1)若蛋糕店每天做20個(gè)生日蛋糕,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天生日蛋糕的需求量(單位:個(gè), )的函數(shù)關(guān)系;
(2)蛋糕店記錄了100天生日蛋糕的日需求量(單位:個(gè))整理得下表:
(。┘僭O(shè)蛋糕店在這100天內(nèi)每天制作20個(gè)生日蛋糕,求這100天的日利潤(單位:元)的平均數(shù);
(ⅱ)若蛋糕店一天制作20個(gè)生日蛋糕,以100天記錄的各需求量的頻率作為概率,求當(dāng)天利潤不少于900元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】眉山市位于四川西南,有“千載詩書城,人文第一州”的美譽(yù),這里是大文豪蘇軾、蘇洵、蘇轍的故鄉(xiāng),也是人們旅游的好地方.在今年的國慶黃金周,為了豐富游客的文化生活,每天在東坡故里三蘇祠舉行“三蘇文化”知識競賽.已知甲、乙兩隊(duì)參賽,每隊(duì)3人,每人回答一個(gè)問題,答對者為本隊(duì)贏得一分,答錯(cuò)得零分.假設(shè)甲隊(duì)中每人答對的概率均為,乙隊(duì)中3人答對的概率分別為,,,且各人回答正確與否相互之間沒有影響.
(1)分別求甲隊(duì)總得分為0分;2分的概率;
(2)求甲隊(duì)得2分乙隊(duì)得1分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1= ,an+1﹣1=an(an﹣1)(n∈N*)且Sn= + +…+ ,則Sn的整數(shù)部分的所有可能值構(gòu)成的集合是( )
A.{0,1,2}
B.{0,1,2,3}
C.{1,2}
D.{0,2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=(ex-a)2+(e-x-a)2(a≥0).
(1)將f(x)表示成u(其中u=)的函數(shù);
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)D是⊙O上一點(diǎn),過點(diǎn)D作⊙O的切線,交AB的延長線于點(diǎn)C,過點(diǎn)C作AC的垂線,交AD的延長線于點(diǎn)E.
(1)求證:△CDE為等腰三角形;
(2)若AD=2, = ,求⊙O的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com