函數(shù)數(shù)學(xué)公式在區(qū)間(-1,1)上是


  1. A.
    偶函數(shù)
  2. B.
    奇函數(shù)
  3. C.
    非奇非偶函數(shù)
  4. D.
    不能確定
C
分析:根據(jù)題意,分析可得函數(shù)的定義域?yàn)?1<x≤1,其定義域不關(guān)于原點(diǎn)對(duì)稱,由函數(shù)奇偶性的定義分析可得答案.
解答:根據(jù)題意,對(duì)于函數(shù),
≥0且1+x≠0,
解可得,-1<x≤1,
其定義域不關(guān)于原點(diǎn)對(duì)稱,則其是非奇非偶函數(shù);
故選C.
點(diǎn)評(píng):本題考查函數(shù)奇偶性的判斷,判斷函數(shù)的奇偶性時(shí),首先要判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再判斷f(x)與f(-x)的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=9x-2•3x-1,求該函數(shù)在區(qū)間x∈[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若k=
1
3
,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間[
1
2
,a]
上的值域?yàn)?span id="p1tzjr7" class="MathJye">[
1
a
,1],若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
x+b
x2+a
的定義域?yàn)镽,f(1)=
1
2

(1)求實(shí)數(shù)a,b的值;
(2)證明函數(shù)f(x)在區(qū)間(-1,1)上為增函數(shù);
(3)若g(x)=3-x-f(x),證明函數(shù)g(x)在(-1,1)上有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(-1,1)上的函數(shù)f(x)=
ax+b
1+x2
為奇函數(shù),且f(
1
2
)=
2
5

(1)求實(shí)數(shù)a,b的值;
(2)用定義證明:函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù);
(3)解關(guān)于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:(i)f(-1)=f(1)=0;(ii)對(duì)任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)證明:對(duì)任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判斷函數(shù)g(x)=
1+x,x∈[-1,0)
1-x,x∈[0,1]
是否滿足題設(shè)條件;
(Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的函數(shù)y=f(x),且使得對(duì)任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
若存在,請(qǐng)舉一例:若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案