在平面直角坐標系xOy中,已知平面區(qū)域A={(x,y)|x+y≤1,且x≥0,y≥0},則平面區(qū)域B={(x+y,x-y)|(x,y)∈A}的面積為
 
分析:首先利用換元法設(shè)出區(qū)域B內(nèi)點的坐標,再根據(jù)區(qū)域A內(nèi)點的約束條件求出區(qū)域B內(nèi)點的約束條件,
然后畫出其可行域,最后由三角形面積公式求得答案.
解答:精英家教網(wǎng)解:設(shè)
x′=x+y
y′=x-y
,則
x=
x′+y′
2
y=
x′-y′
2
,
又x+y≤1,且x≥0,y≥0,
解得x′≤1,x′+y′≥0,x′-y′≥0,
即x≤1,x+y≥0,x-y≥0.
畫出可行域,如圖所示
解得A(1,1)、B(1,-1),
所以S△OAB=
1
2
×2×1
=1,即平面區(qū)域B的面積為1.
故答案為1.
點評:本題主要考查換元法及二元一次不等式組表示的平面區(qū)域.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案