【題目】已知拋物線,斜率為的直線交拋物線于,兩點,當(dāng)直線過點時,以為直徑的圓與直線相切.
(1)求拋物線的方程;
(2)與平行的直線交拋物線于,兩點,若平行線,之間的距離為,且的面積是面積的倍,求和的方程.
【答案】(1);(2),或者,.
【解析】
(1)設(shè)直線方程為,代入得,根據(jù)中點坐標(biāo)公式,結(jié)合韋達(dá)定理可得圓心坐標(biāo),利用弦長公式可得圓的直徑,利用圓心到直線的距離等于半徑,列方程求解即可得到拋物線的方程;(2)利用點到直線距離公式、弦長公式,結(jié)合三角形面積公式可得,同理可得,利用 的面積是面積的倍列方程求解即可.
(1)設(shè)AB直線方程為代入得
設(shè)∴
當(dāng)時,,AB的中點為
依題意可知,解之得
拋物線方程為.
(2)O到直線的距離為,
.
因為平行線之間的距離為,則CD的直線方程為
.
依題意可知,即
化簡得,∴代入
∴或者.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中,側(cè)面是邊長為2的菱形,,.
(Ⅰ)證明:;
(Ⅱ)若底面是以為直角頂點的直角三角形,且,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若某校研究性學(xué)習(xí)小組共6人,計劃同時參觀科普展,該科普展共有甲,乙,丙三個展廳,6人各自隨機(jī)地確定參觀順序,在每個展廳參觀一小時后去其他展廳,所有展廳參觀結(jié)束后集合返回,設(shè)事件A為:在參觀的第一小時時間內(nèi),甲,乙,丙三個展廳恰好分別有該小組的2個人;事件B為:在參觀的第二個小時時間內(nèi),該小組在甲展廳人數(shù)恰好為2人,則( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大型綜藝節(jié)目,《最強(qiáng)大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學(xué)會盲擰也是很容易的根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān)為了驗證這個結(jié)論,某興趣小組隨機(jī)抽取了50名魔方愛好者進(jìn)行調(diào)查,得到的情況如表所示,并邀請其中20名男生參加盲擰三階魔方比賽,其完成情況如表所示.
(Ⅰ)將表補(bǔ)充完整,并判斷能否在犯錯誤的概率不超過的前提下認(rèn)為是否喜歡盲擰與性別有關(guān)?
(Ⅱ)現(xiàn)從表中成功完成時間在和這兩組內(nèi)的6名男生中任意抽取2人對他們的盲擰情況進(jìn)行視頻記錄,求2人成功完成時間恰好在同一組內(nèi)的概率.
附參考公式及數(shù)據(jù):,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面
(I)求證:;
(II)若M為中點,求證:平面;
(III)在線段BC上(含端點)是否存在點P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a >2.
(I)討論函數(shù)f(x)的單調(diào)性;
(II)若對于任意的,恒有,求a的取值范圍.
(III)設(shè),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈(-,).
(1)當(dāng)θ=-時,求函數(shù)f(x)的最大值;
(2)求θ的取值范圍,使y=f(x)在區(qū)間[-1,]上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a∈R).
(1)討論y=f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個不同零點x1,x2,求實數(shù)a的范圍并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com