點(diǎn)P(-1,3)到直線l:y=k(x-2)的距離的最大值等于( )
(A)2 (B)3 (C)3 (D)2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:填空題
設(shè)二次函數(shù)y=x2-x+1與x軸正半軸的交點(diǎn)分別為A,B,與y軸正半軸的交點(diǎn)是C,則過A,B,C三點(diǎn)的圓的標(biāo)準(zhǔn)方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十七第八章第八節(jié)練習(xí)卷(解析版) 題型:解答題
已知線段AB的兩個端點(diǎn)A,B分別在x軸、y軸上滑動,|AB|=3,點(diǎn)M滿足2=.
(1)求動點(diǎn)M的軌跡E的方程.
(2)若曲線E的所有弦都不能被直線l:y=k(x-1)垂直平分,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十一第八章第二節(jié)練習(xí)卷(解析版) 題型:填空題
若直線3x+4y-3=0與直線6x+my+14=0平行,則它們之間的距離為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十一第八章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
已知點(diǎn)A(-3,-4),B(6,3)到直線l:ax+y+1=0的距離相等,則實(shí)數(shù)a的值等于( )
(A) (B)-
(C)-或- (D)或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十第三章第四節(jié)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=sin(2x+).
(1)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間.
(2)畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十第三章第四節(jié)練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=sin(ωx+)(ω>0)的最小正周期為π,則該函數(shù)的圖象( )
(A)關(guān)于直線x=對稱
(B)關(guān)于點(diǎn)(,0)對稱
(C)關(guān)于直線x=-對稱
(D)關(guān)于點(diǎn)(,0)對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十六第四章第二節(jié)練習(xí)卷(解析版) 題型:解答題
平面內(nèi)給定三個向量a=(3,2),b=(-1,2),c=(4,1),回答下列問題:
(1)求3a+b-2c.
(2)求滿足a=mb+nc的實(shí)數(shù)m,n.
(3)若(a+kc)∥(2b-a),求實(shí)數(shù)k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十五第四章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
已知a,b是不共線的向量,=λa+b,=a+μb(λ,μ∈R),那么A,B,C三點(diǎn)共線的充要條件是( )
(A)λ+μ=2(B)λ-μ=1
(C)λμ=-1(D)λμ=1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com