一個(gè)袋子中裝有3個(gè)紅球,2個(gè)黃球,1個(gè)黑球,從中任取三個(gè)球.且規(guī)定:取出一個(gè)紅球得1分,取出一個(gè)黃球2分,取出一個(gè)黑球3分.
(Ⅰ)求取出的三個(gè)球中恰有兩個(gè)球顏色相同的概率;
(Ⅱ)求得分為5分的概率.
考點(diǎn):離散型隨機(jī)變量的期望與方差,互斥事件的概率加法公式,相互獨(dú)立事件的概率乘法公式
專題:概率與統(tǒng)計(jì)
分析:(1)取出的三個(gè)球中恰有兩個(gè)球顏色相同情況有:①2紅球,另1個(gè)為黃球或黑球;②2黃球,另1個(gè)為紅球或黑球,由此能求出其概率.
(2)得分為5分情況有:1紅2黃和2紅1黑,由此能求出其概率.
解答: 解:(1)取出的三個(gè)球中恰有兩個(gè)球顏色相同情況有:
①2紅球,另1個(gè)為黃球或黑球;②2黃球,另1個(gè)為紅球或黑球,
其概率為:
P1=
C
2
3
C
1
3
+C
2
2
C
1
4
C
3
6
=
13
20

(2)得分為5分情況有:1紅2黃和2紅1黑,
其概率為:
P2=
C
1
3
C
2
2
+
C
2
3
C
1
1
C
3
6
=
3
10
點(diǎn)評(píng):本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2013年某市某區(qū)高考文科數(shù)學(xué)成績(jī)抽樣統(tǒng)計(jì)如下表:
(1)求出表中m、n、M、N的值,并根據(jù)表中所給數(shù)據(jù)在如圖所示給出的坐標(biāo)系中畫出頻率分布直方圖;(縱坐標(biāo)保留了小數(shù)點(diǎn)后四位小數(shù))
分組頻數(shù)頻率頻率/組距
[0,30)60.0060.0002
[30,60)820.0820.0027
[60,90)2560.2560.0085
[90,120)mn0.0145
[120,150]220N0.0073
合計(jì)M1
(2)若2013年北京市高考文科考生共有20000人,試估計(jì)全市文科數(shù)學(xué)成績(jī)?cè)?0分及90分以上的人數(shù);
(3)香港某大學(xué)對(duì)內(nèi)地進(jìn)行自主招生,在參加面試的學(xué)生中,有6名學(xué)生數(shù)學(xué)成績(jī)?cè)?40分以上,其中男生有4名,要從6名學(xué)生中錄取2名學(xué)生,求其中恰有1名女生被錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-alnx,g(x)=-
1+a
x
,(a∈R).

(1)設(shè)函數(shù)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)區(qū)間;
(2)若在區(qū)間[1,e](e=2.718…)上存在一點(diǎn)x0,使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)
sin3(
π
2
+α)+cos3(
2
-α)
sin(3π+α)+cos(4π-α)
-sin(
2
+α)cos(
2
+α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知直線l過點(diǎn)A(1,0),且其向上的方向與極軸的正方向所成的最小正角為
π
3
,求:
(1)直線的極坐標(biāo)方程;
(2)極點(diǎn)到該直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:等差數(shù)列{an}中,a4=14,前10項(xiàng)和S10=185.
(1)求an;
(2)數(shù)列{bn}滿足bn=a2n求此數(shù)列的前n項(xiàng)和Gn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的方程為9x2+y2=81,求橢圓的離心率、焦點(diǎn)坐標(biāo)和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x+
3x-x2-2
的值域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案