定義在集合D上的函數(shù)如果同時(shí)滿足下列條件:①在集合D上單調(diào)遞減或遞增。②存在區(qū)間使上的值域是,那么叫做閉函數(shù)。

(1)求閉函數(shù)符合條件②的區(qū)間

(2)已知是閉函數(shù),求實(shí)數(shù)的取值范圍。

解:(1)由上為減函數(shù),得,可得,,

所求區(qū)間是.   

(2)設(shè)函數(shù)符合條件②的區(qū)間為,則

,故,是方程的兩個(gè)實(shí)根,

命題等價(jià)于有兩個(gè)不等實(shí)根.

當(dāng)時(shí),   解得,

;當(dāng)時(shí),這時(shí),無解.

所以的取值范圍是.  

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在集合D上的函數(shù),且-1<f′(x)<0.
(1)若f(x)=-
x
2
+asinx
,在[
π
2
,π
]([
π
2
,π
]⊆D)上的最大值為
1-π
4
,試求不等式|ax+1|<a的解集.
(2)若對(duì)于定義域中任意的x1,x2,存在正數(shù)ε,使|x1-1|<
ε
2
且|x2-1|<
ε
2
,求證:|f(x1)-f(x2)|<ε.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性,且存在區(qū)間[a,b]⊆D,使當(dāng)x∈[a,b]時(shí),f(x)的值域是[a,b],則稱函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.已知函數(shù)f(x)=
x
是[0,+∞)上的正函數(shù),則f(x)的等域區(qū)間為
[0,1]
[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性,且存在區(qū)間[a,b]⊆D(其中a<b),使當(dāng)x∈[a,b]時(shí),
f(x)的值域是[a,b],則稱函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
(1)已知函數(shù)f(x)=
x
是[0,+∞)上的正函數(shù),試求f(x)的等域區(qū)間.
(2)試探究是否存在實(shí)數(shù)k,使函數(shù)g(x)=x2+k是(-∞,0)上的正函數(shù)?若存在,求出k的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在集合D上的函數(shù),若對(duì)集合D中的任意兩數(shù)x1,x2恒有f(
1
4
x1+
3
4
x2)<
1
4
f(x1)+
3
4
f(x2)
成立,則f(x)是定義在D上的β函數(shù).
(1)試判斷f(x)=x2是否是其定義域上的β函數(shù)?
(2)設(shè)f(x)是定義在R上的奇函數(shù),求證:f(x)不是定義在R上的β函數(shù).
(3)設(shè)f(x)是定義在集合D上的函數(shù),若對(duì)任意實(shí)數(shù)α∈[0,1]以及集合D中的任意兩數(shù)x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)是定義在D上的α-β函數(shù).已知f(x)是定義在R上的α-β函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n=1,2,3…m且a0=0,am=2m,記∫=a1+a2+a3+…+am,對(duì)任意滿足條件的函數(shù)f(x),求∫的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性且存在區(qū)間[a,b]⊆D(其中a<b)使當(dāng)x∈[a,b]時(shí),f(x)的值域是[a,b],則稱函數(shù)f(x)是D上的“正函數(shù)”,區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
(1)已知函數(shù)f(x)=x3是正函數(shù),試求f(x)的所有等域區(qū)間;
(2)若g(x)=
x+2
+k
是正函數(shù),試求實(shí)數(shù)k的取值范圍;
(3)是否存在實(shí)數(shù)a,b(a<b<1)使得函數(shù)f(x)=|1-
1
x
|
是[a,b]上的“正函數(shù)”?若存在,求出區(qū)間[a,b],若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案