【題目】如圖,把邊長為4的正沿中位線折起使點到的位置.
(1)在棱上是否存在點,使得平面?若存在,確定的位置,若不存在,說明理由;
(2)若,求四棱錐的體積.
【答案】(1)存在,是的中點;(2)3
【解析】
(1)取的中點,的中點,連接,,,利用三角形中位線定理,結(jié)合平行四邊形的判定定理和性質(zhì)定理、線面平行的判定定理進(jìn)行推理論證即可;
(2)取的中點,的中點,可知、、三點共線,連接,,.利用線面垂直的判定定理和性質(zhì)定理,結(jié)合勾股定理及逆定理、棱錐的體積公式進(jìn)行求解即可.
(1)取的中點,的中點,連接,,,則是的中位線,∴,同理,∴.
∴四邊形是平行四邊形,∴,又面,面,
∴平面,∴上存在中點使平面.
(2)取的中點,的中點,易知、、三點共線,連接,,.
易知,∴,
又.
∴面.
又,
∴面,
∴.
又,.
∴,
又易知,
∴,
∴,
又,
∴面.
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】臨近開學(xué)季,某大學(xué)城附近的一款“網(wǎng)紅”書包銷售火爆,其成本是每件15元.經(jīng)多數(shù)商家銷售經(jīng)驗,這款書包在未來1個月(按30天計算)的日銷售量(個)與時間(天)的關(guān)系如下表所示:
時間(/天) | 1 | 4 | 7 | 11 | 28 | … |
日銷售量(/個) | 196 | 184 | 172 | 156 | 88 | … |
未來1個月內(nèi),前15天每天的價格(元/個)與時間(天)的函數(shù)關(guān)系式為(且為整數(shù)),后15天每天的價格(元/個)與時間(天)的函數(shù)關(guān)系式為(且為整數(shù)).
(1)認(rèn)真分析表格中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)(個)與(天)的關(guān)系式;
(2)試預(yù)測未來1個月中哪一天的日銷售利潤最大,最大利潤是多少?
(3)在實際銷售的第1周(7天),商家決定每銷售1件商品就捐贈元利潤給該城區(qū)養(yǎng)老院.商家通過銷售記錄發(fā)現(xiàn),這周中,每天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的菱形中, ,點分別是的中點, ,沿將翻折到,連接,得到如圖的五棱錐,且
(1)求證: 平面(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:首項為且公比為正數(shù)的等比數(shù)列為“數(shù)列”.
(Ⅰ)已知等比數(shù)列()滿足:,,判斷數(shù)列是否為“數(shù)列”;
(Ⅱ)設(shè)為正整數(shù),若存在“數(shù)列”( ),對任意不大于的正整數(shù),都有成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在黨中央的正確指導(dǎo)下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的奮力救治,二月份“新冠肺炎”疫情得到了控制.下圖是國家衛(wèi)健委給出的全國疫情通報,甲、乙兩個省份從2月7日到2月13日一周的新增“新冠肺炎”確診人數(shù)的折線圖如下:
根據(jù)圖中甲、乙兩省的數(shù)字特征進(jìn)行比對,通過比較把你得到最重要的兩個結(jié)論寫在答案紙指定的空白處.
①_________________________________________________.
②_________________________________________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的右焦點為,點分別是橢圓的上、下頂點,點是直線上的一個動點(與軸的交點除外),直線交橢圓于另一個點.
(1)當(dāng)直線經(jīng)過橢圓的右焦點時,求的面積;
(2)①記直線的斜率分別為,求證:為定值;
②求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為定義在上的偶函數(shù),當(dāng)時,.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個零點:求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,過橢圓右焦點的直線與橢圓交于,兩點,當(dāng)直線與軸垂直時,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線與軸不垂直時,在軸上是否存在一點(異于點),使軸上任意點到直線,的距離均相等?若存在,求點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com