如圖,在四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,底面ABCD為矩形,AD=2AB=2PA,E為PD的上一點(diǎn),且PE=2ED,F(xiàn)為PC的中點(diǎn).
(Ⅰ)求證:BF平面AEC;
(Ⅱ)求二面角E-AC-D的余弦值.
精英家教網(wǎng)

精英家教網(wǎng)
建立如圖所示空間直角坐標(biāo)系A(chǔ)-xyz,
設(shè)B(1,0,0),則D(0,2,0),P(0,0,1),C(1,2,0)E(0,
4
3
,
1
3
)
F(
1
2
,1,
1
2
)
(2分)
(Ⅰ)設(shè)平面AEC的一個(gè)法向量為
n
=(x,y,z)

AE
=(0,
4
3
1
3
)
,
AC
=(1,2,0)
,
∴由
n
AE
=0
n
AC
=0

4
3
y+
1
3
z=0
x+2y=0
,
令y=-1,得
n
=(2,-1,4)
(4分)
BF
=(-
1
2
,1,
1
2
)
,
BF
n
=2×(-
1
2
)+(-1)×1+4×
1
2
=0
,(5分)
BF
n
,BF?平面AEC,
∴BF平面AEC.(7分)
(Ⅱ)由(Ⅰ)知平面AEC的一個(gè)法向量為
n
=(2,-1,4)
,
AP
=(0,0,1)
為平面ACD的法向量,(8分)
cos<
n
,
AP
>=
n
AP
|
n
||
AP
|
=
4
21
21
,(11分)
故二面角E-AC-D的余弦值為
4
21
21
(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊答案