6.使sinx<cosx成立的一個區(qū)間是( 。
A.(-$\frac{3}{4}$π,$\frac{π}{4}$)B.(-$\frac{1}{2}$π,$\frac{π}{2}$)C.(-$\frac{1}{4}$π,$\frac{3π}{4}$)D.(0,π)

分析 不等式sinx<cosx的解集為(-$\frac{3}{4}$π+2kπ,$\frac{π}{4}$+2kπ)(k∈Z),進而得到答案.

解答 解:根據(jù)正弦函數(shù)和余弦函數(shù)的圖象和性質(zhì)可得:
不等式sinx<cosx的解集為(-$\frac{3}{4}$π+2kπ,$\frac{π}{4}$+2kπ)(k∈Z),
當k=0時,(-$\frac{3}{4}$π,$\frac{π}{4}$)滿足條件,
故選:A.

點評 本題考查的知識點是三角函數(shù)的圖象和性質(zhì),三角不等式的解法,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.若復數(shù)$\frac{1-bi}{2+i}$(b∈R)的實部與虛部相等,則b的值為( 。
A.-6B.-3C.3D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知復數(shù)z滿足z=$\frac{2i}{1+\sqrt{3}i}$(i為虛數(shù)單位),則z的共軛復數(shù)的虛部是-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知[x]表示不超過實數(shù)x的最大整數(shù)(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定義{x}=x-[x],給出如下命題:
①使[x+1]=3成立的x的取值范圍是2≤x<3;
②函數(shù)y={x}的定義域為R,值域為[0,1];
③設函數(shù)f(x)=$\left\{\begin{array}{l}\left\{x\right\}\begin{array}{l}{\;},{x≥0}\end{array}\\ f(x+1)\begin{array}{l}{\;},{x<0}\end{array}\end{array}$,則函數(shù)y=f(x)-$\frac{1}{4}$x-$\frac{1}{4}$的不同零點有3個.
④{$\frac{2013}{2014}}$}+{${\frac{{{{2013}^2}}}{2014}}$}+{${\frac{{{{2013}^3}}}{2014}}$}+…+{${\frac{{{{2013}^{2014}}}}{2014}$}=1007.
其中正確命題的序號是①③④.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.數(shù)列{an}和{bn}都是首項為1的等差數(shù)列,設Sn是數(shù)列{an}的前n項和,且由Sn=bn2
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{${\frac{2}{{{a_n}{a_{n+1}}}}}\right.$}的前n項和An

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知y=f(x)是定義在[-1,1]上的偶函數(shù),與g(x)圖象關于x=1對稱,當x∈[2,3]時,g(x)=2a(x-2)-3(x-2)2,a為常數(shù),若f(x)的最大值為12,則a=( 。
A.3B.6C.6或$\frac{15}{2}$D.$\frac{15}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知直線l的傾斜角是l':x-y+3=0傾斜角的2倍,且原點到直線l的距離等于2,則直線l的方程為( 。
A.x=2或x=-2B.x=2C.x=-2D.y=x+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知a>1,b>0,且a+b=2,求$\frac{1}{a-1}$+$\frac{2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a2+11b2=2$\sqrt{3}$ab,且sinC=2$\sqrt{3}$sinB.
(1)求角B的大;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=tanB,求△ABC的面積.

查看答案和解析>>

同步練習冊答案