【題目】春節(jié)期間某超市搞促銷活動(dòng),當(dāng)顧客購買商品的金額達(dá)到一定數(shù)量后可以參加抽獎(jiǎng)活動(dòng),活動(dòng)規(guī)則為:從裝有個(gè)黑球, 個(gè)紅球, 個(gè)白球的箱子中(除顏色外,球完全相同)摸球.
(Ⅰ)當(dāng)顧客購買金額超過元而不超過元時(shí),可從箱子中一次性摸出個(gè)小球,每摸出一個(gè)黑球獎(jiǎng)勵(lì)元的現(xiàn)金,每摸出一個(gè)紅球獎(jiǎng)勵(lì)元的現(xiàn)金,每摸出一個(gè)白球獎(jiǎng)勵(lì)元的現(xiàn)金,求獎(jiǎng)金數(shù)不少于元的概率;
(Ⅱ)當(dāng)購買金額超過元時(shí),可從箱子中摸兩次,每次摸出個(gè)小球后,放回再摸一次,每摸出一個(gè)黑球和白球一樣獎(jiǎng)勵(lì)元的現(xiàn)金,每摸出一個(gè)紅球獎(jiǎng)勵(lì)元的現(xiàn)金,求獎(jiǎng)金數(shù)小于元的概率.
【答案】(Ⅰ) ;(Ⅱ)
【解析】試題分析:(Ⅰ)根據(jù)題意列舉出所有基本事件和滿足要求的基本事件,再利用古典概型的概率公式和互斥事件有一個(gè)發(fā)生的概率公式進(jìn)行求解;(Ⅱ)根據(jù)題意列舉出所有基本事件和滿足要求的基本事件,再利用古典概型的概率公式和對(duì)立事件的概率公式進(jìn)行求解.
試題解析:(Ⅰ) 個(gè)黑球依次為黑,黑,黑,個(gè)紅球依次為紅,紅,白球?yàn)榘?從箱子中一次性摸出個(gè)小球的基本事件為(黑黑),(黑黑),(黑黑),(黑紅),(黑紅),(黑紅),(黑紅),(黑紅),(黑紅),(紅紅),(黑白),(黑白),(黑白),(紅白),(紅白)基本事件總數(shù)為,
獎(jiǎng)金數(shù)恰好為元基本事件為(紅紅),(黑白),(黑白),(黑白),其基本事件數(shù)為,記為事件,獎(jiǎng)金數(shù)恰好為元的概率
獎(jiǎng)金數(shù)恰好為元基本事件為(紅白),(紅白),其基本事件數(shù)為,記為事件,獎(jiǎng)金數(shù)恰好為元的概率
獎(jiǎng)金數(shù)恰好不少于元的概率
(Ⅱ) 個(gè)黑球依次為黑,黑,黑, 個(gè)紅球依次為紅,紅,從箱子中摸兩次,每次摸出個(gè)小球后,放回再摸一次的基本事件為
(黑黑)(黑黑),(黑黑),(黑紅),(黑紅),(黑白),
(黑黑)(黑黑),(黑黑),(黑紅),(黑紅),(黑白),
(黑黑)(黑黑),(黑黑),(黑紅),(黑紅),(黑白),
(紅黑)(紅黑),(紅黑), (紅紅),(紅紅),(紅白),
(紅黑)(紅黑),(紅黑),(紅紅),(紅紅),(紅白),
(白黑)(白黑),(白黑),(白紅),(白紅),(白白),
基本事件總數(shù)為,獎(jiǎng)金數(shù)最高為元,獎(jiǎng)金數(shù)恰好為元的基本事件為(紅紅),(紅紅),(紅紅),(紅紅),基本事件總數(shù)為,
設(shè)獎(jiǎng)金數(shù)元的事件為則
獎(jiǎng)金數(shù)小于元的概率
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:存在實(shí)數(shù)m,使方程x2+mx+1=0有兩個(gè)不等的負(fù)根;命題q:存在實(shí)數(shù)m,使方程4x2+4(m-2)x+1=0無實(shí)根.若“p或q”為真,“p且q”為假,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人練習(xí)罰球,每人練習(xí)6組,每組罰球20個(gè),命中個(gè)數(shù)的莖葉圖如下:
(1)求甲命中個(gè)數(shù)的中位數(shù)和乙命中個(gè)數(shù)的眾數(shù);
(2)通過計(jì)算,比較甲乙兩人的罰球水平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率為且過點(diǎn),過定點(diǎn)的動(dòng)直線與該橢圓相交于兩點(diǎn).
(1)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(2)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市經(jīng)營一批產(chǎn)品,在市場銷售中發(fā)現(xiàn)此產(chǎn)品在30天內(nèi)的日銷售量P(件)與日期)之間滿足,已知第5日的銷售量為55件,第10日的銷售量為50件。
(1)求第20日的銷售量; (2)若銷售單價(jià)Q(元/件)與的關(guān)系式為,求日銷售額的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為正方形,,,,,,為的中點(diǎn).
(1)求證:平面;
(2)在線段上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第屆夏季奧林匹克運(yùn)動(dòng)會(huì)2016年8月5日到2016年8月21日在巴西里約熱內(nèi)盧舉行,為了解我校學(xué)生“收看奧運(yùn)會(huì)足球賽”是否與性別有關(guān),從全校學(xué)生中隨機(jī)抽取名進(jìn)行了問卷調(diào)查,得到列聯(lián)表,從這名同學(xué)中隨機(jī)抽取人,抽到“收看奧運(yùn)會(huì)足球賽 ”的學(xué)生的概率是.
男生 | 女生 | 合計(jì) | |
收看 | |||
不收看 | |||
合計(jì) |
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并據(jù)此資料分析“收看奧運(yùn)會(huì)足球賽”與性別是否有關(guān);
(2)若從這名同學(xué)中的男同學(xué)中隨機(jī)抽取人參加有獎(jiǎng)競猜活動(dòng),記抽到收看奧運(yùn)會(huì)足球賽”的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的兩個(gè)極值點(diǎn)為,且.
(1)求的值;
(2)若在(其中上是單調(diào)函數(shù), 求的取值范圍;
(3)當(dāng)時(shí), 求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若某產(chǎn)品的直徑長與標(biāo)準(zhǔn)值的差的絕對(duì)值不超過1mm時(shí),則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機(jī)抽取5000件進(jìn)行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品.計(jì)算這50件不合格品的直徑長與標(biāo)準(zhǔn)值的差(單位:mm),將所得數(shù)據(jù)分組,得到如下頻率分布表:
分 組 | 頻 數(shù) | 頻 率 |
[-3,-2) | 0.10 | |
[-2,-1) | 8 | |
(1,2] | 0.50 | |
(2,3] | 10 | |
(3,4] | ||
合計(jì) | 50 | 1.00 |
(1)將上面表格中缺少的數(shù)據(jù)填充完整.
(2)估計(jì)該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間(1,3]內(nèi)的概率.
(3)現(xiàn)對(duì)該廠這種產(chǎn)品的某個(gè)批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品.據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com