設(shè)a,b為正實(shí)數(shù),若
1
b
-
1
a
=1,判斷a-b與1的大小關(guān)系,并證明.
考點(diǎn):不等式比較大小
專題:不等式的解法及應(yīng)用
分析:
1
b
-
1
a
=1,可得b=
a
a+1
.作差a-b-1=a-
a
a+1
-1=
a2-a-1
a+1
解答: 解:∵
1
b
-
1
a
=1,∴b=
a
a+1

∴a-b-1=a-
a
a+1
-1=
a2-a-1
a+1

由a2-(a+1)>0,a>0,解得a>
1+
5
2
,∴當(dāng)a>
1+
5
2
時(shí),a-b>1;
由a2-(a+1)=0,a>0,解得a=
1+
5
2
,∴當(dāng)a=
1+
5
2
時(shí),a-b=1;
由a2-(a+1)<0,a>0,解得0<a<
1+
5
2
,∴當(dāng)0<a<
1+
5
2
時(shí),a-b<1.
點(diǎn)評(píng):本題考查了作差法比較兩個(gè)數(shù)的大小、一元二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過點(diǎn)A(-3,4),且法向量為
n
=(1,-2)的直線(點(diǎn)法式)方程為:1×(x+3)+(-2)×(y-4)=0,化簡得x-2y+11=0.類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn)A(1,2,3),且法向量為
n
=(-1,-2,1)的平面的方程為( 。
A、x+2y-z-2=0
B、x-2y-z-2=0
C、x+2y+z-2=0
D、x+2y+z+2=0
E、+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3     (x≤1)
-x+5    (x>1)
,求f(f(6))的值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域:
(1)f(x)=
1
x-2
;       
(2)f(x)=
3x+2
;
(3)y=
x2-1
+
x2-
1
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校舉辦趣味運(yùn)動(dòng)會(huì),甲、乙兩名同學(xué)報(bào)名參加比賽,每人投籃2次,每次等可能選擇投2分球或3分球.據(jù)賽前訓(xùn)練統(tǒng)計(jì):甲同學(xué)投2分球命中率為
3
5
,投3分球命中率為
3
10
;乙同學(xué)投2分球命中率為
1
2
,投3分球命中率為
2
5
,且每次投籃命中與否相互之間沒有影響.
(1)若甲同學(xué)兩次都選擇投3分球,求其總得分ξ的分布列和數(shù)學(xué)期望;
(2)記“甲、乙兩人總得分之和不小于10分”為事件A,記“甲同學(xué)總得分大于乙同學(xué)總得分”為事件B,求P(AB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

做一個(gè)容積為256L的方底無蓋水箱,它的高為多少時(shí)材料最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A(1,-1,7),B(3,-2,5),C(2,-3,9).
(1)試求△ABC的各邊之長;
(2)求三角形的三個(gè)內(nèi)角的大;
(3)寫出△ABC的重心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形的兩條高所在直線方程為:2x-3y+1=0和x+y=0,點(diǎn)A(1,2)是它的一個(gè)項(xiàng)點(diǎn),求:
(1)BC邊所在直線方程.
(2)三個(gè)內(nèi)角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知xi>0(i=1,2,3,…,n),我們知道有(x1+x2)(
1
x1
+
1
x2
)≥4成立.
(Ⅰ)請證明(x1+x2+x3)(
1
x1
+
1
x2
+
1
x3
)≥9;
(Ⅱ)同理我們也可以證明出(x1+x2+x3+x4)(
1
x1
+
1
x2
+
1
x3
+
1
x4
)≥16
由上述幾個(gè)不等式,請你猜測與x1+x2+…+xn
1
x1
+
1
x2
+…+
1
xn
(n≥2,n∈N*)有關(guān)的不等式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊答案