【題目】已知函數(shù)
(1)當時,求的單調(diào)區(qū)間;
(2)若是的極大值點,求的取值范圍.
【答案】(1) 單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為;(2) .
【解析】
(1)將代入,求出函數(shù)的解析式,再確定函數(shù)的定義域,利用導數(shù)法,即可求出函數(shù)的單調(diào)區(qū)間;
(2)求,求出的根,然后對分類討論,結(jié)合是的極大值點,即可求出的取值范圍.
(1)當時,,函數(shù)的定義域為,,
令,解得或;令,解得,
所以函數(shù)的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為.
(2)由已知得,令得或,
當時,,
+ | ─ | + | |||
↗ | 極大值 | ↘ | 極小值 | ↗ |
此時是的極大值點,故當,符合題意.
當時,,此時在上單調(diào)遞增,函數(shù)無極值點,故不符合題意;
當時,,
+ | ─ | + | |||
↗ | 極大值 | ↘ | 極小值 | ↗ |
此時,是的極小值點,不符合題意.
綜上,的取值范圍為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象是由函數(shù)的圖象經(jīng)如下變換得到:先將函數(shù)圖象上所有點的橫坐標縮短到原來的倍(縱坐標不變),再將所得到的圖象向左平移個單位長度.
(1)寫出函數(shù)的解析式和其圖象的對稱中心坐標.
(2)已知關(guān)于的方程在上有兩個不同的解,,求實數(shù)的取值范圍和的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若a>0,設是函數(shù)圖象上的任意兩點,記直線AB的斜率為k,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項為正數(shù)的數(shù)列滿足:且.
(1)證明:數(shù)列為等差數(shù)列.
(2)若,證明:對一切正整數(shù)n,都有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,
已知圓和圓.
(1)若直線過點,且被圓截得的弦長為,
求直線的方程;(2)設P為平面上的點,滿足:
存在過點P的無窮多對互相垂直的直線和,
它們分別與圓和圓相交,且直線被圓
截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點P的坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著6月6日商用牌照發(fā)放,中國正式進入商用時代.某人在一山坡處觀測對面山頂上的一座基站(如圖),圖中所示的山坡均可視為直線,其中基站所在的山坡的坡角為,點所在山坡的坡度為.基站點距坡谷點的距離為米,點距坡谷點的距離為米,且在點處測得塔頂點的仰角是.求基站的高度.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年,隨著中國第一款5G手機投入市場,5G技術(shù)已經(jīng)進入高速發(fā)展階段.已知某5G手機生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機萬臺,其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足
(1)將利潤表示為產(chǎn)量萬臺的函數(shù);
(2)當產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+)-1.
(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)將y=f(x)圖象上所有的點向右平行移動個單位長度,得到y=g(x)的圖象.若g(x)在(0,m)內(nèi)是單調(diào)函數(shù),求實數(shù)m的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com