(
1
x2
+x)5
的展開式中,x2的系數(shù)是______.
1
x2
+x)5展開式的通項(xiàng)為Tr+1=
Cr5
(
1
x2
) r •x 5-r
=C5rx5-3r (r是小于或等于5的自然數(shù))
令5-3r=2
解得r=1,所以展開式中x2的系數(shù)是C51=5
故答案為5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問題所用的時(shí)間,講座開始時(shí),學(xué)生的興趣激增,中間有一段不太長的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)的值越大,表示接受能力越強(qiáng)),x表示提出和講授概念的時(shí)間(單位:分),可以有以下公式:
-0.1x2+2.6x+43(0<x≤10)
59(10<x≤16)
-3x+107(16<x≤30)

(1)開講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少分鐘?
(2)開講5分鐘與開講15分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
(3)一個(gè)數(shù)學(xué)難題,需要55的接受能力以及10分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x 2+ax+a
x
,且a<1.
(1)當(dāng)x∈[1,+∞)時(shí),判斷f(x)的單調(diào)性并證明;
(2)在(1)的條件下,若m滿足f(3m)>f(5-2m),試確定m的取值范圍.
(3)設(shè)函數(shù)g(x)=x•f(x)+|x2-1|+(k-a)x-a,k為常數(shù).若關(guān)于x的方程g(x)=0在(0,2)上有兩個(gè)解x1,x2,求k的取值范圍,并比較
1
x1
+
1
x2
與4的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•西城區(qū)二模)在(
1x2
+x)5
的展開式中,x2的系數(shù)是
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問題所用的時(shí)間,講座開始時(shí),學(xué)生的興趣激增,中間有一段不太長的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)的值越大,表示接受能力越強(qiáng)),x表示提出和講授概念的時(shí)間(單位:分),可以有以下公式:f(x)=
-0.1x2+2.6x+43
59
-3x+107
(0<x≤10)
(10<x≤16)
(16<x≤30)

(1)開講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少分鐘?
(2)開講5分鐘與開講20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
(3)一個(gè)數(shù)學(xué)難題,需要55的接受能力以及13分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題?

查看答案和解析>>

同步練習(xí)冊(cè)答案