在△ABC中,角A,B, C所對邊分別為a,b,c,且
(1)求角A;
(2)若m,n,試求|mn|的最小值.

(1);(2)

解析試題分析:(1)注意到由正弦定理有,及A+B+C=1800;將已知等式左邊切化弦,化簡可得到角A的余弦值,從而就可求得角A的大小;(2)由(1)知利用向量模的概念可將轉(zhuǎn)化為角B的三角函數(shù),求此三角的最小值即得.
試題解析:(1)由即:
(2),

,從而
當(dāng)時,
考點:1.正弦定理;2.三角公式;3.三角函數(shù)的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知ABC外接圓O的半徑為1,且 ,從圓O內(nèi)隨機取一個點M,若點M取自△ABC內(nèi)的概率恰為 ,則MBC的形狀為

A.直角三角形B.等邊三角形C.鈍角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的三個內(nèi)角成等差數(shù)列,它們的對邊分別為,且滿足,
(1)求
(2)求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,,
(1)求長;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為銳角,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,半圓O的直徑為2,A為直徑延長線上的一點,OA=2,B為半圓上任意一點,以AB為一邊作等邊三角形ABC.問:點B在什么位置時,四邊形OACB面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角所對的邊分別為,且是方程的兩個根,且,求:
(1)的度數(shù);  (2)邊的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪, 圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.

(1)設(shè)(x≥0),,求用表示的函數(shù)關(guān)系式,并求函數(shù)的定義域;
(2).如果是灌溉水管,為節(jié)約成本,希望它最短,的位置應(yīng)在哪里?如果是參觀線路,則希望它最長,的位置又應(yīng)在哪里?請予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,三個內(nèi)角A,B,C所對的邊分別是a,b,c,且
(1)求角的大;
(2)求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案