【題目】如圖,在四棱錐中,底面是菱形,且.
(1)求證:;
(2)若平面與平面的交線為,求證:.
【答案】(1)詳見解析,(2)詳見解析.
【解析】
試題分析:(1)證明線線垂直,一般利用線面垂直性質(zhì)與判定定理進行轉(zhuǎn)換:因為四邊形ABCD為菱形,所以,又因為,O為BD的中點,所以,又因為,所以,又因為,所以(2)證明線線平行,一般利用線面平行性質(zhì)與判定定理進行轉(zhuǎn)換:因為 ,.所以,又因為,平面平面,所以.
試題解析:(1)連接AC,交BD于點O,連接PO.
因為四邊形ABCD為菱形,所以 2分
又因為,O為BD的中點,
所以 4分
又因為
所以,
又因為
所以 7分
(2)因為四邊形ABCD為菱形,所以 9分
因為.
所以 11分
又因為,平面平面.
所以. 14分
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+(1﹣a) x2﹣a(a+2)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點,且在原點處的切線斜率是﹣3,求a,b的值;
(2)若函數(shù)f(x)在區(qū)間(﹣1,1)上不單調(diào),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項積為,即.
(1)若數(shù)列為首項為2016,公比為的等比數(shù)列,
①求的表達式;②當為何值時, 取得最大值;
(2)當時,數(shù)列都有且成立,
求證: 為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù) ,且其圖象關于直線x=0對稱,則( )
A.y=f(x)的最小正周期為π,且在(0, )上為增函數(shù)
B.y=f(x)的最小正周期為π,且在(0, )上為減函數(shù)
C.y=f(x)的最小正周期為 ,且在 上為增函數(shù)
D.y=f(x)的最小正周期為 ,且在 上為減函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或下滿6局時停止.設甲在每局中獲勝的概率為p(p> ),且各局勝負相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為 .
(1)求p的值;
(2)設ξ表示比賽停止時已比賽的局數(shù),求隨機變量ξ的分布列和數(shù)學期望Eξ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,AB為圓O的直徑,CD為垂直AB的一條弦,垂足為E,弦AG交CD于F.
(1)求證:E、F、G、B四點共圓;
(2)若GF=2FA=4,求線段AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com