【題目】在平面直角坐標(biāo)系中,已知過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),,其中.
(1)若,求的面積;
(2)在x軸上是否存在定點(diǎn)T,使得直線TA、TB與y軸圍成的三角形始終為等腰三角形.
【答案】(1) (2) x軸上存在定點(diǎn),使得直線TA、TB與y軸圍成的三角形始終為等腰三角形
【解析】
(1)當(dāng)時(shí)得直線l:,與橢圓聯(lián)立得B,再求面積
(2)設(shè)直線l: ,與橢圓聯(lián)立,由直線TA、TB與y軸圍成的三角形始終為等腰三角形,得 ,利用斜率代入韋達(dá)定理化簡(jiǎn)得定點(diǎn)坐標(biāo)
(1)當(dāng)時(shí),代入橢圓方程可得點(diǎn)坐標(biāo)為或
若點(diǎn)坐標(biāo)為,此時(shí)直線l:
聯(lián)立,消x整理可得
解得或,故B
所以的面積為
,由對(duì)稱性知的面積也是,
綜上可知,當(dāng)時(shí),的面積為.
(2)顯然直線l的斜率不為0,設(shè)直線l:
聯(lián)立,消去x整理得
由,得
則, ,
因?yàn)橹本TA、TB與y軸圍成的三角形始終為等腰三角形,
所以
設(shè),則,
即,
解得.
故x軸上存在定點(diǎn),使得直線TA、TB與y軸圍成的三角形始終為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在常數(shù)a,使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:2,3,6,m(m>6)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列{bn}的項(xiàng)數(shù)是n0(n0≥3),所有項(xiàng)之和是B,求證:數(shù)列{bn}是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對(duì)于一個(gè)不少于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知從2開始的連續(xù)偶數(shù)蛇形排列形成寶塔形數(shù)表,第一行為2,第一行為46,第三行為12,10,8,第四行為14,16,18,20.如圖所示,在寶塔形數(shù)表中位于第i行,第j列的數(shù)記為,比如,,,,若,則( )
A.65B.70C.71D.72
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,平面平面,,,點(diǎn),分別是棱,的中點(diǎn),點(diǎn)是的重心.
(1)證明:平面;
(2)若與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】惠州市某商店銷售某海鮮,經(jīng)理統(tǒng)計(jì)了春節(jié)前后50天該海鮮的日需求量(,單位:公斤),其頻率分布直方圖如下圖所示.該海鮮每天進(jìn)貨1次,每銷售1公斤可獲利40元;若供大于求,剩余的海鮮削價(jià)處理,削價(jià)處理的海鮮每公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,調(diào)撥的海鮮銷售1公斤可獲利30元.假設(shè)商店該海鮮每天的進(jìn)貨量為14公斤,商店銷售該海鮮的日利潤(rùn)為元.
(1)求商店日利潤(rùn)關(guān)于日需求量的函數(shù)表達(dá)式.
(2)根據(jù)頻率分布直方圖,
①估計(jì)這50天此商店該海鮮日需求量的平均數(shù).
②假設(shè)用事件發(fā)生的頻率估計(jì)概率,請(qǐng)估計(jì)日利潤(rùn)不少于620元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國(guó),緊跟黨走”為主題的黨史知識(shí)競(jìng)賽。從參加競(jìng)賽的學(xué)生中,隨機(jī)抽取40名學(xué)生,將其成績(jī)分為六段,,,,,,到如圖所示的頻率分布直方圖.
(1)求圖中的值及樣本的中位數(shù)與眾數(shù);
(2)若從競(jìng)賽成績(jī)?cè)?/span>與兩個(gè)分?jǐn)?shù)段的學(xué)生中隨機(jī)選取兩名學(xué)生,設(shè)這兩名學(xué)生的競(jìng)賽成績(jī)之差的絕對(duì)值不大于分為事件,求事件發(fā)生的概率.
(3)為了激勵(lì)同學(xué)們的學(xué)習(xí)熱情,現(xiàn)評(píng)出一二三等獎(jiǎng),得分在內(nèi)的為一等獎(jiǎng),得分在內(nèi)的為二等獎(jiǎng), 得分在內(nèi)的為三等獎(jiǎng).若將頻率視為概率,現(xiàn)從考生中隨機(jī)抽取三名,設(shè)為獲得三等獎(jiǎng)的人數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)求a;
(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,在函數(shù)的圖像上取定兩點(diǎn),記直線AB的斜率為k,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動(dòng)新能源汽車產(chǎn)業(yè)的迅速發(fā)展,下表是近幾年我國(guó)某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計(jì)表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
銷量(萬臺(tái)) | 8 | 10 | 13 | 25 | 24 |
某機(jī)構(gòu)調(diào)查了該地區(qū)30位購(gòu)車車主的性別與購(gòu)車種類情況,得到的部分?jǐn)?shù)據(jù)如下表所示:
購(gòu)置傳統(tǒng)燃油車 | 購(gòu)置新能源車 | 總計(jì) | |
男性車主 | 6 | 24 | |
女性車主 | 2 | ||
總計(jì) | 30 |
(1)求新能源乘用車的銷量關(guān)于年份的線性相關(guān)系數(shù),并判斷與是否線性相關(guān);
(2)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為購(gòu)車車主是否購(gòu)置新能源乘用車與性別有關(guān);
參考公式:,,其中.,若,則可判斷與線性相關(guān).
附表:
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱AB與底面垂直,燈桿BC與燈柱AB所在的平面與道路走向垂直,路燈C采用錐形燈罩,射出的管線與平面ABC部分截面如圖中陰影所示,路寬AD=24米,設(shè)
(1)求燈柱AB的高h(用表示);
(2)此公司應(yīng)該如何設(shè)置的值才能使制作路燈燈柱AB和燈桿BC所用材料的總長(zhǎng)度最。孔钚≈禐槎嗌?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com