(本題滿分12分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分6分.
如圖已知四棱錐的底面是邊長(zhǎng)為6的正方形,側(cè)棱的長(zhǎng)為8,且垂直于底面,點(diǎn)分別是的中點(diǎn).求
(1)異面直線與所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)四棱錐的表面積.
(1).(2) 144
【解析】
試題分析:
(1)解法 一:連結(jié),可證∥,直線與所成角等于直線與所成角.因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013042808400396919851/SYS201304280840284847786312_DA.files/image006.png">垂直于底面,所以,點(diǎn)分別是的中點(diǎn), ,在中,,,
,
即異面直線與所成角的大小為.
解法二:以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系可得,,,,,
直線與所成角為,向量的夾角為
又,,
即異面直線與所成角的大小為.
(說(shuō)明:兩種方法難度相當(dāng))
(2) 因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013042808400396919851/SYS201304280840284847786312_DA.files/image006.png">垂直于底面,所以,即≌
,同理≌…………8分
底面四邊形是邊長(zhǎng)為6的正方形,所以
又
所以四棱錐的表面積是144
考點(diǎn):本題考查了異面直線的夾角及四棱錐表面積的求法
點(diǎn)評(píng):高考中的立體幾何問(wèn)題主要是探求和證明空間幾何體中的平行和垂直關(guān)系以及空間角、體積等計(jì)算問(wèn)題.對(duì)于平行和垂直問(wèn)題的證明或探求,其關(guān)鍵是把線線、線面、面面之間的關(guān)系進(jìn)行靈活的轉(zhuǎn)化.在尋找解題思路時(shí),不妨采用分析法,從要求證的結(jié)論逐步逆推到已知條件
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大。
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com