【題目】在平面直角坐標系xOy中,點A(0,3),直線l:y=2x﹣4.設圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=﹣x+5上,求圓C的方程;
(2)在(1)的條件下,過點A作圓C的切線,求切線的方程;
(3)若圓C上存在點M,使|MA|=|MO|,求圓心C的橫坐標a的取值范圍.

【答案】
(1)解:由

得圓心C為(3,2),

∵圓C的半徑為,∴圓C的方程為:(x﹣3)2+(y﹣2)2=1


(2)解:由題意知切線的斜率一定存在,

設所求圓C的切線方程為y=kx+3,即kx﹣y+3=0

=1

∴2k(4k+3)=0

∴k=0或者k=﹣

∴所求圓C的切線方程為:y=3或y=﹣ x+3,即y=3或者3x+4y﹣12=0


(3)解:設M為(x,y),由 =

整理得直線m:y=

∴點M應該既在圓C上又在直線m上,即:圓C和直線m有公共點

∴|2a﹣4﹣ |≤1,∴ ≤a≤

綜上所述,a的取值范圍為:[ , ]


【解析】(1)聯(lián)立直線l與直線y=﹣x+5,求出方程組的解得到圓心C坐標,可得圓C的方程;(2)根據(jù)A坐標設出切線的方程,由圓心到切線的距離等于圓的半徑,列出關(guān)于k的方程,求出方程的解得到k的值,確定出切線方程即可;(3)設M(x,y),由MA=2MO,利用兩點間的距離公式列出關(guān)系式,整理后得到點M的軌跡為以(0,﹣1)為圓心,2為半徑的圓,可記為圓D,由M在圓C上,得到圓C與圓D相交或相切,根據(jù)兩圓的半徑長,得出兩圓心間的距離范圍,利用兩點間的距離公式列出不等式,求出不等式的解集,即可得到a的范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形中, 為邊的中點,將沿直線翻轉(zhuǎn)成.若為線段的中點,則在翻折過程中:

是定值;②點在某個球面上運動;

③存在某個位置,使;④存在某個位置,使平面.

其中正確的命題是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)為常數(shù)),為自然對數(shù)的底數(shù).

(1)當時,求實數(shù)的取值范圍;

(2)當時,求使得成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(﹣1)=0,試判斷函數(shù)f(x)零點個數(shù);
(2)若對x1x2∈R,且x1<x2 , f(x1)≠f(x2),證明方程f(x)= 必有一個實數(shù)根屬于(x1 , x2).
(3)是否存在a,b,c∈R,使f(x)同時滿足以下條件
①當x=﹣1時,函數(shù)f(x)有最小值0;
②對任意x∈R,都有0≤f(x)﹣x≤ 若存在,求出a,b,c的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若動點在直線上,動點在直線上,設線段的中點為,且,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,且離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設是橢圓上的點,直線為坐標原點)的斜率之積為.若動點滿足,試探究是否存在兩個定點使得為定值?若存在的坐標;若不存在請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為, 的中點, 為線段上的動點,過點 , 的平面截該正方體所得的截面為,則下列命題正確的是__________(寫出所有正確命題的編號).

①當時, 為四邊形;②當時, 為等腰梯形;

③當時, 的交點滿足;

④當時, 為五邊形;

⑤當時, 的面積為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓及點

(1)在圓上,求線段的長及直線的斜率;

(2)若為圓上任一點,求的最大值和最小值;

(3)若實數(shù)滿足,求的最大值和最小值.

查看答案和解析>>

同步練習冊答案