某地區(qū)1986年以來(lái)人口總數(shù)和居民住宅總面積分別按等比數(shù)列和等差數(shù)列逐年遞增.已知1986年底人均住房面積為10m2,2006年底人均住房面積為20m2.據(jù)此計(jì)算:
(1)1996年底人均住房面積超過(guò)14m2,試給出證明;
(2)若人口年平均增長(zhǎng)率不超過(guò)3%,能否確保2008年底人均住房面積比2006年底有所增加?為什么?
【答案】分析:(1)根據(jù)人口總數(shù)和居民住宅總面積分別按等比數(shù)列和等差數(shù)列逐年遞增,可得2006年底人均住房面積,進(jìn)而可得1996年底人均住房面積,故可證.
(2)線計(jì)算2008年與2006年底人均住房面積之差再利用導(dǎo)數(shù)的方法,即可解決.
解答:解:(1)設(shè)86年底人口總數(shù)為a,住宅總面積10a,年人口增長(zhǎng)的公比為q(即后一年是前一年人口的q倍),年住宅總面積的公差為d,則2006年底人均住房面積為,則10d=5(2q20-1)a,
故1996年底人均住房面積
(2)2008年底人均住房面積,
2008年與2006年底人均住房面積之差
∵q>0,∴只需考慮分子f(q)=22q20-20q22-1=2q20(11-10q2)-1(q>1).
∵f'(q)=440(q19-q21)<0,∴f(q)單調(diào)遞減.
又q≤1.03,∴f(q)≥f(1.03)=2×1.0320(11-10×1.032)-1,
∴11-10×1.032>0.39,2×1.0320=2×(1+0.03)20>2×(1+20×0.03)=3.2.
∴f(q)>3.2×0.39-1>0.
此即表明,2008年底人均住房面積仍超過(guò)2006年底人均住房面積.
點(diǎn)評(píng):本題以數(shù)列為載體,考查實(shí)際運(yùn)用,關(guān)鍵是正確理解數(shù)列模型,從而構(gòu)建代數(shù)式,有一定的綜合性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)1986年以來(lái)人口總數(shù)和居民住宅總面積分別按等比數(shù)列和等差數(shù)列逐年遞增.已知1986年底人均住房面積為10m2,2006年底人均住房面積為20m2.據(jù)此計(jì)算:
(1)1996年底人均住房面積超過(guò)14m2,試給出證明;
(2)若人口年平均增長(zhǎng)率不超過(guò)3%,能否確保2008年底人均住房面積比2006年底有所增加?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某地區(qū)1986年以來(lái)人口總數(shù)和居民住宅總面積分別按等比數(shù)列和等差數(shù)列逐年遞增.已知1986年底人均住房面積為10m2,2006年底人均住房面積為20m2.據(jù)此計(jì)算:
(1)1996年底人均住房面積超過(guò)14m2,試給出證明;
(2)若人口年平均增長(zhǎng)率不超過(guò)3%,能否確保2008年底人均住房面積比2006年底有所增加?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省常州中學(xué)高三最后沖刺綜合練習(xí)數(shù)學(xué)試卷2(文科)(解析版) 題型:解答題

某地區(qū)1986年以來(lái)人口總數(shù)和居民住宅總面積分別按等比數(shù)列和等差數(shù)列逐年遞增.已知1986年底人均住房面積為10m2,2006年底人均住房面積為20m2.據(jù)此計(jì)算:
(1)1996年底人均住房面積超過(guò)14m2,試給出證明;
(2)若人口年平均增長(zhǎng)率不超過(guò)3%,能否確保2008年底人均住房面積比2006年底有所增加?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案