7.已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是夾角為$\frac{π}{3}$的單位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,則向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$D.$\frac{3\sqrt{13}}{26}$

分析 由條件即可求出$\overrightarrow{a}•\overrightarrow=\frac{3}{2}$,而根據(jù)$|\overrightarrow|=\sqrt{(2\overrightarrow{{e}_{1}}-\overrightarrow{{e}_{2}})^{2}}$即可求出$|\overrightarrow|$的值,而可得到$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$,從而求出該投影的值.

解答 解:根據(jù)條件:
$\overrightarrow{a}•\overrightarrow=(\overrightarrow{{e}_{1}}+3\overrightarrow{{e}_{2}})•(2\overrightarrow{{e}_{1}}-\overrightarrow{{e}_{2}})$
=$2{\overrightarrow{{e}_{1}}}^{2}+5\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}-3{\overrightarrow{{e}_{2}}}^{2}$
=$2+\frac{5}{2}-3$
=$\frac{3}{2}$;
$|\overrightarrow|=\sqrt{(2\overrightarrow{{e}_{1}}-\overrightarrow{{e}_{2}})^{2}}$
=$\sqrt{4{\overrightarrow{{e}_{1}}}^{2}-4\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+{\overrightarrow{{e}_{2}}}^{2}}$
=$\sqrt{4-2+1}$
=$\sqrt{3}$;
∴$\overrightarrow{a}$在$\overrightarrow$方向上的投影為:
$|\overrightarrow{a}|•cos<\overrightarrow{a},\overrightarrow>=|\overrightarrow{a}|•\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$
=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$
=$\frac{\frac{3}{2}}{\sqrt{3}}$
=$\frac{\sqrt{3}}{2}$.
故選B.

點(diǎn)評(píng) 考查單位向量的概念,向量數(shù)量積的運(yùn)算及計(jì)算公式,根據(jù)$|\overrightarrow|=\sqrt{{\overrightarrow}^{2}}$求$|\overrightarrow|$的方法,以及投影的定義及計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}的首項(xiàng)a1=1,數(shù)列{bn}是公比為16的等比數(shù)列,且${b_n}={2^{a_n}}$.
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(2)設(shè)${c_n}=\frac{S_n}{n}•{2^{n-1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線C過(guò)點(diǎn)$P(3,\sqrt{5})$,離心率為$\sqrt{2}$.
(1)求雙曲線C的方程;
(2)過(guò)C的左頂點(diǎn)A引C的一條漸近線的平行線l,求直線l與另一條漸近線及x軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)是定義在[-1,1]上的減函數(shù),若f(m-1)>f(2m-1),則實(shí)數(shù)m的取值范圍是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$),當(dāng)x=-$\frac{π}{4}$時(shí)函數(shù)f(x)能取得最小值,當(dāng)x=$\frac{π}{4}$時(shí)函數(shù)y=f(x)能取得最大值,且f(x)在區(qū)間($\frac{π}{18}$,$\frac{5π}{36}$)上單調(diào).則當(dāng)ω取最大值時(shí)φ的值為-$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知A(-1,0),B(1,0),動(dòng)點(diǎn)M滿足∠AMB=2θ,|$\overrightarrow{AM}$|•|$\overrightarrow{BM}$|•cos2θ=3,設(shè)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)過(guò)A的直線l1與曲線C交于E、F兩點(diǎn),過(guò)B與l1平行的直線l2與曲線C交于G、H兩點(diǎn),求四邊形EFGH的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.給定有窮單調(diào)遞增數(shù)列{xn}(n∈N*),數(shù)列{xn}至少有兩項(xiàng),且xi≠0(1≤i≤n),定義集合A={(x,y)|1≤i,j≤n,且i,j∈N*}.若對(duì)任意點(diǎn)A1∈A,存在A2∈A使得OA1⊥OA2(O為坐標(biāo)原點(diǎn)),則稱數(shù)列{xn}具有性質(zhì)P.
(1)給出下列四個(gè)命題,其中正確是①③④(填上所有正確命題的序號(hào))
①數(shù)列{xn}:-2,2具有性質(zhì)P;
②數(shù)列{xn}:-2,-1,1,2具有性質(zhì)P;
③數(shù)列{xn}具有性質(zhì)P,則{xn}中一定存在兩項(xiàng)xi,xj,使得xi+xj=0;
④數(shù)列{xn}具有性質(zhì)P,x1=-1,x2>0,且xn>1(n≥3),則x2=1.
(2)若數(shù)列{xn}只有2015項(xiàng)且具有性質(zhì)P,x1=-1,x3=2,則{xn}的所有S2015=22016-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=-x2+|x|的遞減區(qū)間是[-$\frac{1}{2}$,0]和[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)焦點(diǎn)在y軸上的雙曲線漸近線方程為$y=±\frac{{\sqrt{3}}}{3}x$,且c=2,已知點(diǎn)A($1,\frac{1}{2}$)
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)A的直線L交雙曲線于M,N兩點(diǎn),點(diǎn)A為線段MN的中點(diǎn),求直線L方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案