已知直線,,m為何實(shí)數(shù)時(shí),(1)相交?(2)平行?(3)重合?

答案:略
解析:

解:若m=0,則x6=0x0,故

m2,則x4y60,3y20,

所以相交.

m≠0,且m≠2,

解得m=1,或m=3

解得m=3

因此,m≠1,m≠3,m≠0時(shí),直線相交;m=1m=0時(shí),平行;m=3時(shí),重合.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:mx-y+1-m=0與圓C:x2+(y-1)2=5交于A、B兩點(diǎn);
(Ⅰ)若|AB|=
17
,求直線l的傾斜角;
(Ⅱ)求弦AB的中點(diǎn)M的軌跡方程;
(Ⅲ)圓C上是否存在一點(diǎn)P使得△ABP為等邊三角形?若存在,求出P點(diǎn)坐標(biāo);不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線
l
 
1
:y=2x+m(m<0)
與拋物線C1:y=ax2(a>0)和圓C2x2+(y+1)2=5都相切,F(xiàn)是C1的焦點(diǎn).
(1)求m與a的值;
(2)設(shè)A是C1上的一動(dòng)點(diǎn),以A為切點(diǎn)作拋物線C1的切線l,直線l交y軸于點(diǎn)B,以FA,F(xiàn)B為鄰邊作平行四邊形FAMB,證明:點(diǎn)M在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-my+1-m=0(m∈R),圓C:x2+y2+4x-2y-4=0.
(Ⅰ)證明:對任意m∈R,直線l與圓C恒有兩個(gè)公共點(diǎn).
(Ⅱ)過圓心C作CM⊥l于點(diǎn)M,當(dāng)m變化時(shí),求點(diǎn)M的軌跡Γ的方程.
(Ⅲ)直線l:x-my+1-m=0與點(diǎn)M的軌跡Γ交于點(diǎn)M,N,與圓C交于點(diǎn)A,B,是否存在m的值,使得
S△CMN
S△CAB
=
1
4
?若存在,試求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知直線,,求m為何實(shí)數(shù)時(shí),:(1)相交?(2)平行?(3)重合?

查看答案和解析>>

同步練習(xí)冊答案