【題目】某公司在新年晚會上舉行抽獎活動,有甲,乙兩個抽獎方案供員工選擇. 方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率均為 ,第一次抽獎,若未中獎,則抽獎結(jié)束,若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,則獲得1000元;若未中獎,則不能獲得獎金.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為 ,每次中獎均可獲得獎金400元.
(Ⅰ)求某員工選擇方案甲進行抽獎所獲獎金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進行抽獎,哪個方案更劃算?
(Ⅲ)已知公司共有100人在活動中選擇了方案甲,試估計這些員工活動結(jié)束后沒有獲獎的人數(shù).
【答案】解:(Ⅰ)由題意知X可能的取值為0,500,1000, ,
,
所以某員工選擇方案甲進行抽獎所獲獎金X(元)的分布列為
X | 0 | 500 | 1000 |
P |
(5分)
(Ⅱ)由(Ⅰ)知,方案甲抽獎所獲獎金X的均值 ,(6分)
若選擇方案乙進行抽獎中獎次數(shù)ξ~B(3, ),
則 ,
抽獎所獲獎金X′的均值E(X′)=E(400ξ)=400E(ξ)=480,
因邊E(X)>E(ξ),
故選擇方案甲較劃算.
(Ⅲ)由(Ⅰ)知選擇方案甲不獲獎的概率為 ,
這些員工不獲獎的人數(shù)Y~B(100, ),
,故這些員工不獲獎的人數(shù)約為28人
【解析】(Ⅰ)由題意知X可能的取值為0,500,1000,分別求出相應(yīng)的概率,由此能求出某員工選擇方案甲進行抽獎所獲獎金X(元)的分布列.(Ⅱ)求出方案甲抽獎所獲獎金X的均值,選擇方案乙進行抽獎中獎次數(shù)ξ~B(3, ),從而抽獎所獲獎金X′的均值E(X′)=E(400ξ)=400E(ξ)=480,由此得到選擇方案甲較劃算.(Ⅲ)選擇方案甲不獲獎的概率為 ,這些員工不獲獎的人數(shù)Y~B(100, ),由此能求出這些員工不獲獎的人數(shù).
【考點精析】根據(jù)題目的已知條件,利用離散型隨機變量及其分布列的相關(guān)知識可以得到問題的答案,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xex﹣a(lnx+x).
(1)若函數(shù)f(x)恒有兩個零點,求a的取值范圍;
(2)若對任意x>0,恒有不等式f(x)≥1成立. ①求實數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)時,若函數(shù)在上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校進行理科、文科數(shù)學(xué)成績對比,某次考試后,各隨機抽取100名同學(xué)的數(shù)學(xué)考試成績進行統(tǒng)計,其頻率分布表如下.
分組 | 頻數(shù) | 頻率 | 分組 | 頻數(shù) | 頻率 | |
[135,150] | 8 | 0.08 | [135,150] | 4 | 0.04 | |
[120,135) | 17 | 0.17 | [120,135) | 18 | 0.18 | |
[105,120) | 40 | 0.4 | [105,120) | 37 | 0.37 | |
[90,105) | 21 | 0.21 | [90,105) | 31 | 0.31 | |
[75,90) | 12 | 0. 12 | [75,90) | 7 | 0.07 | |
[60,75) | 2 | 0.02 | [60,75) | 3 | 0.03 | |
總計 | 100 | 1 | 總計 | 100 | 1 |
理科 文科
(Ⅰ)根據(jù)數(shù)學(xué)成績的頻率分布表,求文科數(shù)學(xué)成績的中位數(shù)的估計值;(精確到0.01)
(Ⅱ)請?zhí)顚懴旅娴牧新?lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為數(shù)學(xué)成績與文理科有關(guān):
數(shù)學(xué)成績120分 | 數(shù)學(xué)成績<120分 | 合計 | |
理科 | |||
文科 | |||
合計 | 200 |
參考公式與臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | ||
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的方程為,若在x軸上的截距為,且.
求直線和的交點坐標(biāo);
已知直線經(jīng)過與的交點,且在y軸上截距是在x軸上的截距的2倍,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程是 (t是參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.曲線C的極坐標(biāo)方程為ρ=4cos(θ+ ).
(1)判斷直線l與曲線C的位置關(guān)系;
(2)過直線l上的點作曲線C的切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),下列命題正確的有_______.(寫出所有正確命題的編號)
①是奇函數(shù);
②在上是單調(diào)遞增函數(shù);
③方程有且僅有1個實數(shù)根;
④如果對任意,都有,那么的最大值為2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過兩點,且圓心在直線上.
(1)求圓的方程;
(2)已知過點的直線與圓相交截得的弦長為,求直線的方程;
(3)已知點,在平面內(nèi)是否存在異于點的定點,對于圓上的任意動點,都有為定值?若存在求出定點的坐標(biāo),若不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com