已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
6
3
,且傾斜角為60°的直線(xiàn)l過(guò)點(diǎn)(0,-2
3
)
和橢圓C的右焦點(diǎn)F.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若已知D(3,0),點(diǎn)M,N是橢圓C上不重合的兩點(diǎn),且
DM
DN
,求實(shí)數(shù)λ的取值范圍.
分析:(Ⅰ)根據(jù)已知中的斜率和所過(guò)點(diǎn)的坐標(biāo)可求得直線(xiàn)的方程,直線(xiàn)與x軸的焦點(diǎn)就是橢圓的右焦點(diǎn),進(jìn)而求得c,再利用離心率求得a.進(jìn)而根據(jù)b=
a2-b2
求得b,橢圓的標(biāo)準(zhǔn)方程可得.
(Ⅱ)根據(jù)
DM
DN
可推斷D,M,N三點(diǎn)共線(xiàn),又依據(jù)D在x軸上,可分析MN與x軸重合時(shí),根據(jù)向量的關(guān)系求得λ的值;當(dāng)MN與x軸不重合時(shí)通過(guò)直線(xiàn)與橢圓方程聯(lián)立消去x,利用韋達(dá)定理和
DM
DN
的關(guān)系求得λ的范圍.最后綜合答案可得.
解答:解:(Ⅰ)由已知可得直線(xiàn)l:y=
3
x-2
3
,
∴橢圓的右焦點(diǎn)(2,0)∴
2
a
=
6
3
,
a=
6
,b=
2
,
橢圓C的方程為
x2
6
+
y2
2
=1

(Ⅱ)由
DM
DN
知,D,M,N三點(diǎn)共線(xiàn),
又點(diǎn)D在x軸上,∴直線(xiàn)MN有以下兩種情況:
①當(dāng)直線(xiàn)MN與x軸重合時(shí),M,N為橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),
DM
DN
,得,λ=5±2
6
;
②當(dāng)直線(xiàn)MN與x軸不重合時(shí),
設(shè)MN:x=my+3,由
x=my+3
x2
6
+
y2
2
=1
消去x得,
(m2+3)y2+6my+3=0,設(shè)M(x1,y1),N(x2,y2),
y1+y2=-
6m
m2+3
y1y2=
3
m2+3
②,
由△=(6m)2-12(m2+3)>0得m2
3
2

DM
DN
,∴(x1-3,y1)=λ(x2-3,y2),
且λ>0,λ≠1,∴y1=λy2③,
由①②③得λ+
1
λ
=
y1
y2
+
y2
y1
=
(y1+y2)2
y1y2
=10-
36
m2+3
,∵m2
3
2

2<λ+
1
λ
<10
,解得,5-2
6
<λ<5+2
6
且λ≠1
綜上所述,實(shí)數(shù)λ的取值范圍是[5-2
6
,1)∪(1,5+2
6
]
點(diǎn)評(píng):本題主要考查了橢圓的標(biāo)準(zhǔn)方程和直線(xiàn)與橢圓的關(guān)系.常需要直線(xiàn)與橢圓方程聯(lián)立,消元后利用韋達(dá)定理找到解決問(wèn)題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過(guò)點(diǎn)P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長(zhǎng)為2
3
,右焦點(diǎn)F與拋物線(xiàn)y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿(mǎn)足
DA
DB
,若λ∈[
3
8
1
2
],求直線(xiàn)AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)B(-1,0)能否作出直線(xiàn)l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.若存在,求出直線(xiàn)l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長(zhǎng)軸長(zhǎng)是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過(guò)點(diǎn)P(0,-2)的直線(xiàn)l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過(guò)橢圓C的右頂點(diǎn)A,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長(zhǎng)為2,離心率為
2
2
,設(shè)過(guò)右焦點(diǎn)的直線(xiàn)l與橢圓C交于不同的兩點(diǎn)A,B,過(guò)A,B作直線(xiàn)x=2的垂線(xiàn)AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線(xiàn)l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案