已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的偶函數(shù),則下列結(jié)論一定成立的是


  1. A.
    ?x∈R,f(x)>f(-x)
  2. B.
    ?x0∈R,f(x0)>f(-x0
  3. C.
    ?x∈R,f(x)f(-x)≥0
  4. D.
    ?x0∈R,f(x0)f(-x0)<0
C
分析:由偶函數(shù)的性質(zhì)f(-x)=f(x)即可對(duì)A,B,C,D四個(gè)選項(xiàng)逐一判斷,即可得到答案.
解答:∵函數(shù)f(x)是定義在實(shí)數(shù)集R上的偶函數(shù),
∴f(-x)=f(x),
故?x∈R,f(x)>f(-x)錯(cuò)誤,即A錯(cuò)誤;
對(duì)于B,若f(x)=0,則不存在x0∈R,f(x0)>f(-x0),故B錯(cuò)誤;
對(duì)于C,?x∈R,f(x)f(-x)≥0,正確;
對(duì)于D,若f(x)=0,則不存在x0∈R,f(x0)f(-x0)<0,故D錯(cuò)誤;
故選C.
點(diǎn)評(píng):本題考查函數(shù)奇偶性的判斷,著重考查偶函數(shù)的概念與性質(zhì)的應(yīng)用,考查特稱命題與全稱命題,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2
,
(1)計(jì)算:[f(1)]2-[g(1)]2
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案