在數(shù)列中,,且前n項的算術(shù)平均數(shù)等于第n項的倍().
(1)寫出此數(shù)列的前5項;
(2)歸納猜想的通項公式,并用數(shù)學(xué)歸納法證明.
(1);(2),證明過程詳見解析.
解析試題分析:(1)根據(jù)條件中描述前項的算術(shù)平均數(shù)等于第項的倍,可以得到相應(yīng)其數(shù)學(xué)表達(dá)式為,結(jié)合,分別取,
得,
;(2)根據(jù)(1)中所求,可以猜測,利用數(shù)學(xué)歸納法,假設(shè)當(dāng)時,結(jié)論成立,則當(dāng)時,根據(jù)(1)中得到的式子,令,可以求得,即當(dāng)時,猜想也成立,從而得證.
(1)由已知,分別取,
得,
;
∴數(shù)列的前5項是: 6分;
(2)由(1)中的分析可以猜想 8分,
下面用數(shù)學(xué)歸納法證明:
①當(dāng)時,猜想顯然成立 9分,
②假設(shè)當(dāng)時猜想成立,
即 10分,
那么由已知,得,
即.∴,
即,又由歸納假設(shè),得,
∴,即當(dāng)時,猜想也成立.
綜上①和②知,對一切,都有成立 13分.
考點:1.數(shù)列的通項公式;2.數(shù)學(xué)歸納法.
科目:高中數(shù)學(xué) 來源: 題型:填空題
蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個蜂巢可以近似地看作是一個正六邊形,如圖為一組蜂巢的截面圖. 其中第一個圖有1個蜂巢,第二個圖有7個蜂巢,第三個圖有19個蜂巢,按此規(guī)律,以表示第幅圖的蜂巢總數(shù).則=_____;=___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足對任意的,都有且.
(1)求的值;
(2)求數(shù)列的通項公式;
(3)設(shè)數(shù)列的前項和為,不等式對任意的正整數(shù)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前n項和記為,點(n,)在曲線()上
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前n項和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的首項,前項和為,且,,成等差數(shù)列,其中.
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足:,記數(shù)列的前項和為,求及數(shù)列的最大項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N*).
(1)寫出a2,a3的值(只寫結(jié)果),并求出數(shù)列{an}的通項公式;
(2)設(shè)bn=+++…+,若對任意的正整數(shù)n,當(dāng)m∈[-1,1]時,不等式t2-2mt+>bn恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(其中),區(qū)間.
(1)求區(qū)間的長度(注:區(qū)間的長度定義為);
(2)把區(qū)間的長度記作數(shù)列,令,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項和Sn=2n2+2n,數(shù)列{bn}的前n項和Tn=2-bn.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設(shè)cn=·bn,證明:當(dāng)且僅當(dāng)n≥3時,cn+1<cn..
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com