【題目】對于數(shù)列,定義, .
(1) 若,是否存在,使得?請說明理由;
(2) 若, ,求數(shù)列的通項公式;
(3) 令,求證:“為等差數(shù)列”的充要條件是“的前4項為等差數(shù)列,且為等差數(shù)列”.
【答案】(1)不存在(2)(3)見解析
【解析】試題分析:(1)由題意知數(shù)列為遞增數(shù)列,計算出數(shù)列的和與可得結(jié)果;(2)根據(jù),可得,故可得,即數(shù)列, 均為公比為6的等比數(shù)列,可得其通項公式;(3)將題意轉(zhuǎn)化為,先證必要性:設(shè),其中為常數(shù),可得,得結(jié)果,再證充分性:利用數(shù)學(xué)歸納法證得結(jié)果.
試題解析:(1)由,可知數(shù)列為遞增數(shù)列, 計算得, ,所以不存在,使得;
(2)由,可以得到當(dāng)時,
,
又因為,所以, 進(jìn)而得到, 兩式相除得,所以數(shù)列, 均為公比為6的等比數(shù)列,
由,得,所以;
(3)證明:由題意,
當(dāng)時, ,
因此,對任意,都有.
必要性():若為等差數(shù)列,不妨設(shè),其中為常數(shù),
顯然,
由于=,
所以對于, 為常數(shù),
故為等差數(shù)列;
充分性():由于的前4項為等差數(shù)列,不妨設(shè)公差為
當(dāng)時,有成立
假設(shè)時為等差數(shù)列,
即
當(dāng)時,由為等差數(shù)列,得,
即: ,
所以
,
因此,
綜上所述:數(shù)列為等差數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點,為線段上的動點.
(1)平面與平面是否互相垂直?如果垂直,請證明;如果不垂直,請說明理由.
(2)若,為線段的三等分點,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的身體素質(zhì),某校高一、高二兩個年級共336名學(xué)生同時參與了“我運動,我健康,我快樂”的跳繩、踢毽等系列體育健身活動.為了了解學(xué)生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學(xué)生中分別抽取7名和5名學(xué)生進(jìn)行測試.下表是高二年級的5名學(xué)生的測試數(shù)據(jù)(單位:個/分鐘):
(1)求高一、高二兩個年級各有多少人?
(2)設(shè)某學(xué)生跳繩個/分鐘,踢毽個/分鐘.當(dāng),且時,稱該學(xué)生為“運動達(dá)人”.
①從高二年級的學(xué)生中任選一人,試估計該學(xué)生為“運動達(dá)人”的概率;
②從高二年級抽出的上述5名學(xué)生中,隨機抽取3人,求抽取的3名學(xué)生中為“運動達(dá)人”的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的定義域D,并判斷的奇偶性;
(2)如果當(dāng)時,的值域是,求a的值;
(3)對任意的m,,是否存在,使得,若存在,求出t,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左頂點為,右焦點為,斜率為1的直線與橢圓交于,兩點,且,其中為坐標(biāo)原點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點且與直線平行的直線與橢圓交于,兩點,若點滿足,且與橢圓的另一個交點為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,,E為AD的中點,AC與BE相交于點O.
(1)證明:平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足,對于任意都有,且,另
(1)求函數(shù)的表達(dá)式;
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時,判斷函數(shù)在區(qū)間上的零點個數(shù),并給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“團購”已經(jīng)滲透到我們每個人的生活,這離不開快遞行業(yè)的發(fā)展,下表是2013-2017年全國快遞業(yè)務(wù)量(x億件:精確到0.1)及其增長速度(y%)的數(shù)據(jù)
(1)試計算2012年的快遞業(yè)務(wù)量;
(2)分別將2013年,2014年,…,2017年記成年的序號t:1,2,3,4,5;現(xiàn)已知y與t具有線性相關(guān)關(guān)系,試建立y關(guān)于t的回歸直線方程;
(3)根據(jù)(2)問中所建立的回歸直線方程,估算2019年的快遞業(yè)務(wù)量
附:回歸直線的斜率和截距地最小二乘法估計公式分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:=1(a>b>0),點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:x2+y2=(c是橢圓的半焦距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.
(1)若橢圓C經(jīng)過兩點、,求橢圓C的方程;
(2)當(dāng)c為定值時,求證:直線MN經(jīng)過一定點E,并求·的值(O是坐標(biāo)原點);
(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍..
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com