已知數(shù)列{an}滿足an+1-an=n+2(n∈N*)且a1=1
(1)求a2,a3,a4的值;
(2)求{an}的通項公式;
(3)令bn=4an-68n,求bn的最小值及此時n的值.
考點:數(shù)列遞推式
專題:計算題,點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)利用an+1-an=n+2(n∈N*)且a1=1,代入計算,可得a2,a3,a4的值;
(2)由已知遞推公式可利用疊加法求解數(shù)列的通項公式;
(3)將{an}的通項公式代入,利用配方法,可求bn的最小值及此時n的值.
解答: 解:(1)∵an+1-an=n+2(n∈N*)且a1=1,
∴a2=4,a3=8,a4=13;
(2)∵an+1-an=n+2
∴a2-a1=1+2
a3-a2=2+2

an-an-1=(n-1)+2
以上n-1個式子相加可得,an-a1=1+2+…+(n-1)+2n-2=
n2+3n-2
2
;
(3)bn=4an-68n=2(n2+3n-2)-68n=2(n-
31
2
2-
953
2
,
∴n=15或16時,bn的最小值為-484.
點評:本題考查了利用遞推公式求數(shù)列的通項公式,考查了累加法,考查配方法的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lg(1-x)的定義域為A,值域為B,則A∩B=( 。
A、(0,+∞)
B、(1,+∞)
C、(0,1)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:實數(shù)x滿足
x-3
x-2
<0
,命題q:實數(shù)x滿足(x-a)(x-3a)<0(a>0).
(Ⅰ)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(Ⅱ)若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角三角形的三邊分別為3cm,4cm,5cm,繞邊長為4cm的邊旋轉(zhuǎn)一周形成一個幾何體,想象并寫出它是什么幾何體,畫出它的三視圖(尺寸不作嚴(yán)格要求),求出它的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=3xsinx-
cosx-lnx
x
的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線相交于一點M(1,m),點M到拋物線焦點的距離為3,則雙曲線的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項數(shù)列{an}的前n項和Sn=
1
4
(an+1)2.求數(shù)列{an}的通項公式,并求出該數(shù)列的前10項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某單位有50名職工,現(xiàn)要從中抽取10名職工,將全體職工隨機按1~50編號,并按編號順序平均分成10組進行系統(tǒng)抽樣.
(Ⅰ)若第1組抽出的號碼為2,寫出所有被抽出職工的號碼;
(Ⅱ)分別統(tǒng)計這10名職工的體重(單位:公斤),獲得體重數(shù)據(jù)的莖葉圖如圖所示,求該樣本的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
sinx+cosx
1+sinx
的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案