分析 由已知及余弦定理可求cosA,利用同角三角函數(shù)基本關(guān)系式可求sinA的值,進(jìn)而利用三角形面積公式即可得解.
解答 解:∵AB=3,AC=4,BC=$\sqrt{13}$,
∴cosA=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB•AC}$=$\frac{{3}^{2}+{4}^{2}-(\sqrt{13})^{2}}{2×3×4}$=$\frac{1}{2}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{3}}{2}$,
∴S△ABC=$\frac{1}{2}$AB•AC•sinA=$\frac{1}{2}×3×4×\frac{\sqrt{3}}{2}$=$3\sqrt{3}$.
故答案為:$3\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查了余弦定理,同角三角函數(shù)基本關(guān)系式,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x1)=f(x2) | B. | f(x1)>f(x2) | ||
C. | f(x1)<f(x2) | D. | 無法比較f(x1)與f(x2)的大小 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | [1,2] | C. | [0,2] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,5} | B. | (6,+∞) | C. | (0,5) | D. | (1,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com