(2013•萊蕪二模)集合A={x||x+1|≤3},B={y|y=
x
,0≤x≤4}
.則下列關系正確的是( 。
分析:根據(jù)絕對值不等式的解法化簡集合A,利用函數(shù)的值域化簡集合B,求出兩集合的并集或集合的補集,最后利用集合間的包含關系的概念能夠得到結果.
解答:解:∵A={x||x+1|≤3}={x|-4≤x≤2},
B={y|0≤y≤2}={x|0≤x≤2},
∴A∪B={x|-4≤x≤2},?RA={x|x>2或x<-4},
?RB={x|x>2或x<0},
∴?RA⊆?RB.
故選D.
點評:本題考查不等式的解法,函數(shù)的值域,集合的包含關系的判斷和應用等,是基礎題.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•萊蕪二模)已知函數(shù)f(x)=x-4+
9
x+1
(x>-1)
,當x=a時,f(x)取得最小值,則在直角坐標系中,函數(shù)g(x)=(
1
a
)|x+1|
的大致圖象為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•萊蕪二模)復數(shù)z=
i3
1+i
在復平面內對應的點位于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•萊蕪二模)已知雙曲線
x2
a2
-
y2
b2
=1
的實軸長為2,焦距為4,則該雙曲線的漸近線方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•萊蕪二模)已知m,n是兩條不同直線,α,β是兩個不同平面,給出四個命題:
①若α∩β=m,n?α,n⊥m,則α⊥β
②若m⊥α,m⊥β,則α∥β
③若m⊥α,n⊥β,m⊥n,則α⊥β
④若m∥α,n∥βm∥n,則α∥β
其中正確的命題是( 。

查看答案和解析>>

同步練習冊答案