【題目】已知數(shù)列{an}與{bn}滿足an=2bn+3(n∈N*),若{bn}的前n項(xiàng)和為Sn= (3n﹣1)且λan>bn+36(n﹣3)+3λ對(duì)一切n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是 .
【答案】( ,+∞)
【解析】解:由Sn= (3n﹣1),得 ,
當(dāng)n≥2時(shí), ,
當(dāng)n=1時(shí),上式成立,∴ .
代入an=2bn+3,得 ,
代入λan>bn+36(n﹣3)+3λ,得λ(an﹣3)>bn+36(n﹣3),
即2λ3n>3n+36(n﹣3),
則λ> + .
由 = ,得n≤3.
∴n=4時(shí), + 有最大值為 .
所以答案是:( ,+∞).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的通項(xiàng)公式(如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ex﹣ax2 , 曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)證明:當(dāng)x>0時(shí),ex+(1﹣e)x﹣xlnx﹣1≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】非空數(shù)集A如果滿足:①0A;②若對(duì)x∈A,有 ∈A,則稱A是“互倒集”.給出以下數(shù)集:
①{x∈R|x2+ax+1=0}; ②{x|x2﹣4x+1<0};③{y|y= }.
其中“互倒集”的個(gè)數(shù)是( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且滿足csinA=acosC,
(1)求角C的大;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值時(shí)角A,B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=alnx+ + x+1,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a,b,c是角A,B,C的對(duì)邊 sinC﹣cosB=cos(A﹣C).
(1)求角A的度數(shù);
(2)若a=2 ,且△ABC的面積是3 ,求b+c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(x+ )+sin(x﹣ )+acosx+b,(a,b∈R)且均為常數(shù)).
(1)求函數(shù)f(x)的最小正周期;
(2)若f(x)在區(qū)間[﹣ ,0]上單調(diào)遞增,且恰好能夠取到f(x)的最小值2,試求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)口袋內(nèi)有4個(gè)不同的紅球,6個(gè)不同的白球.
(1)從中任取4個(gè)球,紅球的個(gè)數(shù)不比白球的個(gè)數(shù)少的取法有多少種?
(2)從中任取5個(gè)球,記取到紅球的個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:函數(shù)f(x)=|2x+3c|在[-1,+∞)上單調(diào)遞增;命題q:函數(shù)g(x)=+2有零點(diǎn).
(1)若命題p和q均為真命題,求實(shí)數(shù)c的取值范圍;
(2)是否存在實(shí)數(shù)c,使得p∧(q)是真命題?若存在,求出c的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com