【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求函數(shù)的最大值;

(2)令,其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.

【答案】(1)(2) (3)

【解析】

(1)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間即得函數(shù)的最大值.(2)由題得.再求右邊二次函數(shù)的最大值即得.(3)轉(zhuǎn)化為有唯一實(shí)數(shù)解,設(shè),再研究函數(shù)在定義域內(nèi)有唯一的零點(diǎn)得解.

(1)依題意,知的定義域?yàn)?/span>

當(dāng)時(shí),

,

,解得.(∵)

因?yàn)?有唯一解,所以,當(dāng)時(shí),,此時(shí)單調(diào)遞增;

當(dāng)時(shí),,此時(shí)單調(diào)遞減,

所以的極大值為,此即為最大值.

(2),則有,在上恒成立,

所以,.

當(dāng)時(shí),取得最大值,所以.

(3)因?yàn)榉匠?/span>有唯一實(shí)數(shù)解,

所以有唯一實(shí)數(shù)解,

設(shè)

,令,

因?yàn)?/span>,所以(舍去),

當(dāng)時(shí),上單調(diào)遞減;

當(dāng)時(shí),,上單調(diào)遞增;

當(dāng)時(shí),,取最小值.

,即,

所以,因?yàn)?/span>,所以(*)

設(shè)函數(shù),因?yàn)楫?dāng)時(shí),

是增函數(shù),所以至多有一解,

因?yàn)?/span>,所以方程(*)的解為,即,解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,正項(xiàng)等比數(shù)列中, ,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)證明:上單調(diào)遞減,在上單調(diào)遞增;

2)記函數(shù)的最小值為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲題型:給出如圖數(shù)陣表格形式,表格內(nèi)是按某種規(guī)律排列成的有限個(gè)正整數(shù).

(1)記第一行的自左至右構(gòu)成數(shù)列,的前項(xiàng)和,試求;

(2)記為第列第行交點(diǎn)的數(shù)字,觀察數(shù)陣請(qǐng)寫出表達(dá)式,若,試求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在以下命題中:

①三個(gè)非零向量,,不能構(gòu)成空間的一個(gè)基底,則,共面;

②若兩個(gè)非零向量,與任何一個(gè)向量都不能構(gòu)成空間的一個(gè)基底,則,共線;

③對(duì)空間任意一點(diǎn)和不共線的三點(diǎn),,,若,則,,四點(diǎn)共面

④若是兩個(gè)不共線的向量,且,則構(gòu)成空間的一個(gè)基底

⑤若為空間的一個(gè)基底,則構(gòu)成空間的另一個(gè)基底;

其中真命題的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行了一次數(shù)學(xué)基礎(chǔ)知識(shí)競(jìng)賽活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì).按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

1)求樣本容量和頻率分布直方圖中的,的值;

2)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?/span>80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加市級(jí)數(shù)學(xué)基礎(chǔ)知識(shí)競(jìng)賽,求所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若某產(chǎn)品的直徑長(zhǎng)與標(biāo)準(zhǔn)值的差的絕對(duì)值不超過時(shí),則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機(jī)抽取5000件進(jìn)行檢測(cè),結(jié)果發(fā)現(xiàn)有50件不合格品.計(jì)算這50件不合格品的直徑長(zhǎng)與標(biāo)準(zhǔn)值的差(單位:)將所得數(shù)據(jù)分組,得到如下頻率分布表:

1)將上面表格中缺少的數(shù)據(jù)填充完整;

2)估計(jì)該廠生產(chǎn)的此種產(chǎn)品中,不合格的直徑長(zhǎng)與標(biāo)準(zhǔn)值的差落在區(qū)間內(nèi)的概率

3)現(xiàn)對(duì)該廠這種產(chǎn)品的某個(gè)批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品,據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.

(1)當(dāng)m=-1時(shí),求AB;

(2)若AB,求實(shí)數(shù)m的取值范圍;

(3)若AB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖所示,同一平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)正方形的某頂點(diǎn)在另一個(gè)正方形的中心,則這兩個(gè)正方形重疊部分的面積恒為,類比到空間,有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為__________.

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案