【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.

(1)當(dāng)m=-1時(shí),求AB

(2)若AB,求實(shí)數(shù)m的取值范圍;

(3)若AB,求實(shí)數(shù)m的取值范圍.

【答案】(1)AB={x|-2<x<3}(2)(3)

【解析】試題分析:(1)m=-1 ,用軸表示兩個(gè)集合,做并集運(yùn)算,注意空心點(diǎn),實(shí)心點(diǎn)。(2)由于AB,首先要保證1-m>2m,即集合B非空,然后由數(shù)軸表示關(guān)系,注意等號(hào)是否可取。(3)空集有兩種情況,一種是集合B為空集,一種是集合B非空,此時(shí)用數(shù)燦表示,寫(xiě)出代數(shù)關(guān)系,注意等號(hào)是否可取。

試題解析:(1)當(dāng)m=-1時(shí), B={x|-2<x<2},AB={x|-2<x<3}

(2)由AB,解得

m的取值范圍是

(3)由AB

①若,即時(shí),B符合題意

②若,即時(shí),需

,即

綜上知,即實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】海上某貨輪在A(yíng)處看燈塔B在貨輪的北偏東75°,距離為12海里;在A(yíng)處看燈塔C在貨輪的北偏西30°,距離為8海里;貨輪向正北由A處行駛到D處時(shí)看燈塔B在貨輪的北偏東120°.(要畫(huà)圖)
(1)A處與D處之間的距離;
(2)燈塔C與D處之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】軸截面是邊長(zhǎng)為4 的等邊三角形的圓錐的直觀(guān)圖如圖所示,過(guò)底面圓周上任一點(diǎn)作一平面α,且α與底面所成的二面角為 ,已知α與圓錐側(cè)面交線(xiàn)的曲線(xiàn)為橢圓,則此橢圓的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),且對(duì)任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),則實(shí)數(shù)a的取值范圍是(
A.[3,+∞)
B.(0,3]
C.[ ,3]
D.(0, ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù),

I求函數(shù)上零點(diǎn)的個(gè)數(shù);

II設(shè),若函數(shù)上是增函數(shù).

求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, , 平面, .設(shè)分別為的中點(diǎn).

(1)求證:平面∥平面;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家具廠(chǎng)生產(chǎn)一種課桌,每張課桌的成本為50元,出廠(chǎng)單價(jià)定為80元,該廠(chǎng)為鼓勵(lì)銷(xiāo)售商多訂購(gòu),決定一次訂購(gòu)量超過(guò)100張時(shí),每超過(guò)一張,這批訂購(gòu)的全部課桌出廠(chǎng)單價(jià)降低0.02元.根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售商一次訂購(gòu)量不會(huì)超過(guò)1000張.
(1)設(shè)一次訂購(gòu)量為x張,課桌的實(shí)際出廠(chǎng)單價(jià)為P元,求P關(guān)于x的函數(shù)關(guān)系式P(x);
(2)當(dāng)一次訂購(gòu)量x為多少時(shí),該家具廠(chǎng)這次銷(xiāo)售課桌所獲得的利潤(rùn)f(x)最大?其最大利潤(rùn)是多少元?(家具廠(chǎng)售出一張課桌的利潤(rùn)=實(shí)際出廠(chǎng)單價(jià)﹣成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別是a,b,c,已知2cosA(bcosC+ccosB)=a.
(1)求角A;
(2)若a= ,b+c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(2)若處取得極小值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案