【題目】【2017廣東佛山二!已知橢圓 )的焦距為4,左、右焦點(diǎn)分別為、,且與拋物線 的交點(diǎn)所在的直線經(jīng)過(guò).

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)的直線交于, 兩點(diǎn),與拋物線無(wú)公共點(diǎn),求的面積的取值范圍.

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析:(1)先根據(jù)焦距確定焦點(diǎn)坐標(biāo),再根據(jù)對(duì)稱性得與拋物線 的交點(diǎn)所在的直線為,即得一個(gè)交點(diǎn)為,代入橢圓方程,結(jié)合可解得, ;(2)先設(shè)直線 ,由直線與拋物線無(wú)公共點(diǎn),利用判別式小于零得.由弦長(zhǎng)公式可求底邊AB長(zhǎng),利用點(diǎn)到直線距離可得高,代入面積公式可得,根據(jù)對(duì)勾函數(shù)確定其值域.

試題解析:(Ⅰ)依題意得,則 .

所以橢圓與拋物線的一個(gè)交點(diǎn)為,

于是 ,從而.

,解得

所以橢圓的方程為.

(Ⅱ)依題意,直線的斜率不為0,設(shè)直線 ,

,消去整理得,由.

,消去整理得,

設(shè) ,則 ,

所以 ,

到直線距離,

,則 ,

所以三邊形的面積的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M的圓心為M(﹣1,2),直線y=x+4被圓M截得的弦長(zhǎng)為 ,點(diǎn)P在直線l:y=x﹣1上.
(1)求圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)Q在圓M上,且滿足 =4 ,求點(diǎn)P的坐標(biāo);
(3)設(shè)半徑為5的圓N與圓M相離,過(guò)點(diǎn)P分別作圓M與圓N的切線,切點(diǎn)分別為A,B,若對(duì)任意的點(diǎn)P,都有PA=PB成立,求圓心N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,若2sinA+sinB= sinC,則角A的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】福利彩票“雙色球”中紅球的號(hào)碼可以從01,02,03,…,32,33這33個(gè)二位號(hào)碼中選取,小明利用如圖所示的隨機(jī)數(shù)表選取紅色球的6個(gè)號(hào)碼,選取方法是從第1行第9列和第10列的數(shù)字開始從左到右依次選取兩個(gè)數(shù)字,則第四個(gè)被選中的紅色球號(hào)碼為( )

81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85

06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49

A. 12 B. 33 C. 06 D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)杯足球賽采用七人制淘汰賽規(guī)則,某場(chǎng)比賽中一班與二班在常規(guī)時(shí)間內(nèi)戰(zhàn)平,直接進(jìn)入點(diǎn)球決勝環(huán)節(jié),在點(diǎn)球決勝環(huán)節(jié)中,雙方首先輪流罰點(diǎn)球三輪,罰中更多點(diǎn)球的球隊(duì)獲勝;若雙方在三輪罰球中未分勝負(fù),則需要進(jìn)行一對(duì)一的點(diǎn)球決勝,即雙方各派處一名隊(duì)員罰點(diǎn)球,直至分出勝負(fù);在前三輪罰球中,若某一時(shí)刻勝負(fù)已分,尚未出場(chǎng)的隊(duì)員無(wú)需出場(chǎng)罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無(wú)需出場(chǎng)).由于一班同學(xué)平時(shí)踢球熱情較高,每位隊(duì)員罰點(diǎn)球的命中率都能達(dá)到0.8,而二班隊(duì)員的點(diǎn)球命中串只有0.5,比賽時(shí)通過(guò)抽簽決定一班在每一輪都先罰球.

(1)定義事件為“一班第三位同學(xué)沒(méi)能出場(chǎng)罰球”,求事件發(fā)生的概率;

(2)若兩隊(duì)在前三輪點(diǎn)球結(jié)束后打平,則進(jìn)入一對(duì)一點(diǎn)球決勝,一對(duì)一球決勝由沒(méi)有在之前點(diǎn)球大戰(zhàn)中出場(chǎng)過(guò)的隊(duì)員主罰點(diǎn)球,若在一對(duì)一點(diǎn)球決勝的某一輪中,某對(duì)隊(duì)員射入點(diǎn)球且另一隊(duì)員未能射入,則比賽結(jié)束;若兩名隊(duì)員均射入或者均射失點(diǎn)球,則進(jìn)行下一輪比賽. 若直至雙方場(chǎng)上每名隊(duì)員都已經(jīng)出場(chǎng)罰球,則比賽亦結(jié)束,雙方通過(guò)抽簽決定勝負(fù),本場(chǎng)比賽中若已知雙方在點(diǎn)球大戰(zhàn),以隨機(jī)變量記錄雙方進(jìn)行一對(duì)一點(diǎn)球決勝的輪數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線C的極坐標(biāo)方程為ρ=2(cosθ+sinθ).
(1)求C的直角坐標(biāo)方程;
(2)直線l: 為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于E,求|EA|+|EB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|y= },B={x|x2﹣2x+1﹣m2≤0}.
(1)若m=3,求A∩B;
(2)若m>0,AB,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣a|,a∈R,g(x)=x2﹣1.
(1)當(dāng)a=1時(shí),解不等式f(x)≥g(x);
(2)記函數(shù)f(x)在區(qū)間[0,2]上的最大值為F(a),求F(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a1a,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足: 3n2anan≠0,n≥2,nN*

(1)若數(shù)列{an}是等差數(shù)列,求a的值;

(2)確定a的取值集合M,使a∈M時(shí),數(shù)列{an}是遞增數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案