已知函數(shù),其中且.
(I)求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時(shí),若存在,使成立,求實(shí)數(shù)的取值范圍.
(I)減區(qū)間是,增區(qū)間是;(II).
【解析】
試題分析:(I)先對函數(shù)求導(dǎo),再分k>0和k<0兩種情況討論,可得函數(shù)的單調(diào)區(qū)間;(II)時(shí),,由得:,構(gòu)造新函數(shù),對新函數(shù)求導(dǎo)得,判斷函數(shù)的單調(diào)性,就可得的取值范圍.
試題解析:(I)定義域?yàn)镽, 2分
當(dāng)時(shí), 時(shí),;時(shí),
當(dāng)時(shí), 時(shí),;時(shí), 4分
所以當(dāng)時(shí),的增區(qū)間是,減區(qū)間是
當(dāng)時(shí),的ug減區(qū)間是,增區(qū)間是 6分
(II)時(shí),,由得:
設(shè),, 8分
所以當(dāng)時(shí),;當(dāng)時(shí),,
所以在上遞增, 在上遞減, 10分
所以的取值范圍是 12分
考點(diǎn):1、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2、導(dǎo)數(shù)與基本函數(shù)的綜合應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市靜安區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)(其中且),是的反函數(shù).
(1)已知關(guān)于的方程在區(qū)間上有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),討論函數(shù)的奇偶性和增減性;
(3)設(shè),其中.記,數(shù)列的前項(xiàng)的和為(),
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山東冠縣武訓(xùn)高中高二下第三次模塊考試?yán)砜茢?shù)學(xué)試題(解析版) 題型:解答題
(本題共12分)
已知函數(shù),其中且。
(Ⅰ)討論的單調(diào)性;
(Ⅱ)求函數(shù)在〔,〕上的最小值和最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省高三第三次模擬考試?yán)砜茢?shù)學(xué) 題型:解答題
已知函數(shù),(其中且).
(1)討論函數(shù)的單調(diào)性;
(2)若,求函數(shù),的最值;
(3)設(shè)函數(shù),當(dāng)時(shí),若對于任意的,總存在唯一
的,使得成立.試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年黑龍江省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本題滿分12分)已知函數(shù),其中且.
(1) 判斷的奇偶性;
(2) 判斷在上的單調(diào)性,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com