已知函數(shù)(其中且),是的反函數(shù).
(1)已知關(guān)于的方程在區(qū)間上有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),討論函數(shù)的奇偶性和增減性;
(3)設(shè),其中.記,數(shù)列的前項(xiàng)的和為(),
求證:.
(1);(2)奇函數(shù),減函數(shù);(3)證明見解析.
【解析】
試題分析:(1)這是一個(gè)對(duì)數(shù)方程,首先要轉(zhuǎn)化為代數(shù)方程,根據(jù)對(duì)數(shù)的性質(zhì)有,從而有,方程在上有解,就變?yōu)榍蠛瘮?shù)在上的值域,轉(zhuǎn)化時(shí)注意對(duì)數(shù)的真數(shù)為正;(2)奇偶性和單調(diào)性我們都根據(jù)定義加以解決;(3),
,要證明不等式成立,最好是能把和求出來(lái),但看其通項(xiàng)公式,這個(gè)和是不可能求出的,由于我們只要證明不等式,那么我們能不能把放縮后可求和呢?,顯然,即,左邊易證,又由二項(xiàng)式定理
,在時(shí),,所以,注意到,至此不等式的右邊可以求和了,
,得證.
試題解析:(1)轉(zhuǎn)化為求函數(shù)在上的值域,
該函數(shù)在上遞增、在上遞減,所以的最小值5,最大值9。所以的取值范圍為。 4分
(2)的定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014050304304156918042/SYS201405030431109285908057_DA.files/image032.png">, 5分
定義域關(guān)于原點(diǎn)對(duì)稱,又, ,所以函數(shù)為奇函數(shù)。 6分
下面討論在上函數(shù)的增減性.
任取、,設(shè),令,則,,所以
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014050304304156918042/SYS201405030431109285908057_DA.files/image045.png">,,,所以. 7分
又當(dāng)時(shí),是減函數(shù),所以.由定義知在上函數(shù)是減函數(shù). 8分
又因?yàn)楹瘮?shù)是奇函數(shù),所以在上函數(shù)也是減函數(shù). 9分
(3) ; 10分
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014050304304156918042/SYS201405030431109285908057_DA.files/image053.png">,,所以,。 11分
設(shè),時(shí),則 , 12分
且, 13分
由二項(xiàng)式定理, 14分
所以,
從而。 18分
考點(diǎn):(1)方程有解與函數(shù)的值域;(2)函數(shù)奇偶性與單調(diào)性;(3)放縮法證明不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014屆吉林省吉林市高三開學(xué)摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),其中且.
(I)求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時(shí),若存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆山東冠縣武訓(xùn)高中高二下第三次模塊考試?yán)砜茢?shù)學(xué)試題(解析版) 題型:解答題
(本題共12分)
已知函數(shù),其中且。
(Ⅰ)討論的單調(diào)性;
(Ⅱ)求函數(shù)在〔,〕上的最小值和最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年黑龍江省高三第三次模擬考試?yán)砜茢?shù)學(xué) 題型:解答題
已知函數(shù),(其中且).
(1)討論函數(shù)的單調(diào)性;
(2)若,求函數(shù),的最值;
(3)設(shè)函數(shù),當(dāng)時(shí),若對(duì)于任意的,總存在唯一
的,使得成立.試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年黑龍江省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本題滿分12分)已知函數(shù),其中且.
(1) 判斷的奇偶性;
(2) 判斷在上的單調(diào)性,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com