設a、b、m、n∈R,且a2+b2=5,ma+nb=5,則m2+n2的最小值為
 
考點:基本不等式
專題:不等式
分析:利用柯西不等式即可得出.
解答: 解:由柯西不等式可得:(m2+n2)(a2+b2)≥(ma+nb)2
m2+n2
52
5
=5,當且僅當na=mb時取等號.
∴m2+n2的最小值為5.
點評:本題考查了柯西不等式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知sin(θ+
π
4
)=
3
5
,θ為鈍角,則cosθ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|z1|=|z2|=|z3|=1,則|
z1z2+z2z3+z3z1
z1+z2+z3
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內(nèi)有兩定點A、B及動點P,設命題甲是:“|PA|+|PB|是定值”,命題乙是:“點P的軌跡是以A、B為焦點的橢圓”,那么甲是乙的
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線ax+by-1=0(a>0,b>0)過曲線y=1+sinπx(0<x<2)的對稱中心,則
1
a
+
2
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2為雙曲線C:
x2
4
-y2=1的左、右焦點,點P在C上,∠F1PF2=60°,則P到x軸的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
log
1
3
(2x-1)
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

分形幾何學是美籍法國數(shù)學家伯努瓦•B•曼德爾布羅特(Benoit B.Mandelbrot)在20世紀70年代創(chuàng)立的一門新學科,它的創(chuàng)立,為解決傳統(tǒng)學科眾多領域難題提供了全新的思路.如圖是按照規(guī)則:1個空心圓點到下一行僅生長出1個實心圓點,1個實心圓點到下一行生長出1個實心圓點和1個空心圓點.所形成的一個樹形圖,則第11行的實心圓點的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出四個函數(shù)圖象分別滿足:
①f(x+y)=f(x)+f(y);
②g(x+y)=g(x)•g(y);
③u(x•y)=u(x)+u(y);
④v(x•y)=v(x)•v(y).
與如圖函數(shù)圖象對應的是( 。
A、①-a,②-b,③-c,④-d
B、①-b,②-c,③-a,④-d
C、①-a,②-c,③-b,④-d
D、①-d,②-a,③-b,④-c

查看答案和解析>>

同步練習冊答案