【題目】已知t為實數(shù),函數(shù)f(x)=2loga(2x+t﹣2),g(x)=logax,其中0<a<1.
(1)若函數(shù)y=g(ax+1)﹣kx是偶函數(shù),求實數(shù)k的值;
(2)當x∈[1,4]時,f(x)的圖象始終在g(x)的圖象的下方,求t的取值范圍;
(3)設(shè)t=4,當x∈[m,n]時,函數(shù)y=|f(x)|的值域為[0,2],若n﹣m的最小值為 ,求實數(shù)a的值.
【答案】
(1)解:∵函數(shù)y=g(ax+1)﹣kx是偶函數(shù),
∴l(xiāng)oga(a﹣x+1)+kx=loga(ax+1)﹣kx,對任意x∈R恒成立,
∴2kx=loga(ax+1)﹣loga(a﹣x+1)=loga( )=x
∴k= ,
(2)解:由題意設(shè)h(x)=f(x)﹣g(x)=2loga(2x+t﹣2)﹣logax<0在x∈[1,4]恒成立,
∴2loga(2x+t﹣2)<logax,
∵0<a<1,x∈[1,4],
∴只需要2x+t﹣2> 恒成立,
即t>﹣2x+ +2恒成立,
∴t>(﹣2x+ +2)max,
令y=﹣2x+ +2=﹣2( )2+ +2=﹣2( ﹣ )2+ ,x∈[1,4],
∴(﹣2x+ +2)max=1,
∴t的取值范圍是t>1,
(3)解:∵t=4,0<a<1,
∴函數(shù)y=|f(x)|=|2loga(2x+2)|在(﹣1,﹣ )上單調(diào)遞減,在(﹣ ,+∞)上單調(diào)遞增,
∵當x∈[m,n]時,函數(shù)y=|f(x)|的值域為[0,2],且f(﹣ )=0,
∴﹣1<m≤ ≤n(等號不同時取到),
令|2loga(2x+2)|=2,得x= 或 ,
又[ ﹣(﹣ )]﹣[(﹣ )﹣ ]= >0,
∴ ﹣(﹣ )>(﹣ )﹣ ,
∴n﹣m的最小值為(﹣ )﹣ = ,
∴a= .
【解析】(1)根據(jù)偶函數(shù)的定義可得k的值;(2)構(gòu)造函數(shù)h(x)=f(x)﹣g(x),根據(jù)對數(shù)函數(shù)的圖象和性質(zhì)可得,只需要t>﹣2x+ +2恒成立,根據(jù)二次函數(shù)的性質(zhì)求出t的取值范圍即可;(3)先判斷函數(shù)y=|f(x)|的單調(diào)性,令|2loga(2x+2)|=2,得到x= 或 ,即可得到n﹣m的最小值為(﹣ )﹣ = ,求出a即可.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法的相關(guān)知識可以得到問題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|ax﹣x2|+2b(a,b∈R).
(1)當a=﹣2,b=﹣ 時,解方程f(2x)=0;
(2)當b=0時,若不等式f(x)≤2x在x∈[0,2]上恒成立,求實數(shù)a的取值范圍;
(3)若a為常數(shù),且函數(shù)f(x)在區(qū)間[0,2]上存在零點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|+2x.
(1)若函數(shù)f(x)在R上是增函數(shù),求實數(shù)a的取值范圍;
(2)求所有的實數(shù)a,使得對任意x∈[1,2]時,函數(shù)f(x)的圖象恒在函數(shù)g(x)=2x+1圖象的下方;
(3)若存在a∈[﹣4,4],使得關(guān)于x的方程f(x)=tf(a)有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)已知函數(shù)f(x)=2x+ (x>0),證明函數(shù)f(x)在(0, )上單調(diào)遞減,并寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)記函數(shù)g(x)=a|x|+2ax(a>1) ①若a=4,解關(guān)于x的方程g(x)=3;
②若x∈[﹣1,+∞),求函數(shù)g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α∈(0, ),滿足 sinα+cosα= .
(1)求cos(α+ )的值;
(2)求cos(2α+ π)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若將函數(shù)y=2sin2x的圖象向左平移 個單位長度,則平移后的圖象的對稱軸為( )
A.x= ﹣ (k∈Z)
B.x= + (k∈Z)
C.x= ﹣ (k∈Z)
D.x= + (k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在高校自主招生中,某學(xué)校獲得5個推薦名額,其中清華大學(xué)2名,北京大學(xué)2名,復(fù)旦大學(xué)1名.并且北京大學(xué)和清華大學(xué)都要求必須有男生參加.學(xué)校通過選拔定下3男2女共5個推薦對象,則不同的推薦方法共有( )
A.20種
B.22種
C.24種
D.36種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=x2﹣2ax+5.
(1)若a>1,且函數(shù)f(x)的定義域和值域均為[1,a],求實數(shù)a的值;
(2)若不等式x|f(x)﹣x2|≤1對x∈[ , ]恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若y=f(x)=Asin(ωx+φ)(A>0,ω>0, 的部分圖象如圖所示.
(I)求函數(shù)y=f(x)的解析式;
(II)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象;若y=g(x)圖象的一個對稱中心為 ,求θ的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com