A.(不等式選講)不等式的解集是                     .

B.(坐標系與參數(shù)方程)在極坐標中,圓的圓心到直線的距離為        .

C.(幾何證明選講)圓的外接圓,過點的圓的切線與的延長線交于點,,

,則的長為        .

 

【答案】

A.        B.          C.

【解析】

試題分析:對于A,由于不等式,則要對于 分為三種情況來討論得到,可知解集,可以通過作圖來得到解集為

對于B,由

解:由ρ=4cosθ,化為直角坐標方程為x2+y2-4x=0,其圓心是A(2,0),由ρsin(θ+ )=2得:ρ sinθ+ρcosθ =2化為直角坐標方程為x+y-4=0,由點到直線的距離公式,得故答案為.

對于C,解:由切割線定理得:DB?DA=DC2,即DB(DB+BA)=DC2, DB2+3DB-28=0,得DB=4.∵∠A=∠BCD,∴△DBC∽△DCA,BC:CA=DB:DC,可知解得的長為

考點:不等式的解集,幾何證明,參數(shù)方程,極坐標方程

點評:解決的關鍵是對于絕對值不等式的最值,以及直線與圓的位置關系,和相交弦定理的熟練的運用,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做.則按所做的第一題評閱計分)
A.(選修4-4坐標系與參數(shù)方程) 已知圓C的圓心為(6,
π
2
),半徑為5,直線θ=a(
π
2
≤θ<π,ρ∈R)
被圓截得的弦長為8,則a=
 

B.(選修4-5 不等式選講)如果關于x的不等式|x-3|-|x-4|<a的解集不是空集,則實數(shù)a的取值范圍是
 
;
C.(選修4-1 幾何證明選講),AB為圓O的直徑,弦AC.BD交于點P,若AB=3,CD=1,則sin∠APD=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-5:不等式選講
設函數(shù)f(x)=|2x-1|+|x+2|.
(1)解不等式f(x)>3;
(2)若關于x的不等式f(x)≤|2a-1|的解集不是空集,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數(shù)方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設a,b,c均為正實數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對應的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標系與參數(shù)方程
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
為參數(shù)),C2的參數(shù)方程為
x=2t
y=t+1
(t
為參數(shù))
(I)若將曲線C1與C2上所有點的橫坐標都縮短為原來的一半(縱坐標不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,求過極點且與C′2垂直的直線的極坐標方程.
(3)選修4-5:不等式選講
設函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(不等式選講)如果關于x的不等式|x+1|+|x-3|<a的解集不是空集,則實數(shù)a的取值范圍是
a>4
a>4

查看答案和解析>>

同步練習冊答案