【題目】某商場為了了解毛衣的月銷售量y(件)與月平均氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計了某4個月的月銷售量與當月平均氣溫,其數(shù)據(jù)如下表:
月平均氣溫x(℃) | 17 | 13 | 8 | 2 |
月銷售量y(件) | 24 | 33 | 40 | 55 |
由表中數(shù)據(jù)算出線性回歸方程 =bx+a中的b=﹣2,氣象部門預測下個月的平均氣溫約為6℃,據(jù)此估計該商場下個月毛衣銷售量約為( )件.
A.46
B.40
C.38
D.58
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,且an+1﹣an=2n , n∈N* , 若 +19≤3n對任意n∈N*都成立,則實數(shù)λ的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)是否存在正數(shù)m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有 <0?若存在,求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣a,g(x)=a|x|,a∈R.
(1)設(shè)F(x)=f(x)﹣g(x). ①若a= ,求函數(shù)y=F(x)的零點;
②若函數(shù)y=F(x)存在零點,求a的取值范圍.
(2)設(shè)h(x)=f(x)+g(x),x∈[﹣2,2],若對任意x1 , x2∈[﹣2,2],|h(x1)﹣h(x2)|≤6恒成立,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】葫蘆島市某工廠黨委為了研究手機對年輕職工工作和生活的影響情況做了一項調(diào)查:在廠內(nèi)用簡單隨機抽樣方法抽取了30名25歲至35歲的職工,對其“每十天累計看手機時間”(單位:小時)進行調(diào)查,得到莖葉圖如下.所抽取的男職工“每十天累計看手機時間”的平均值和所抽取的女生 “每十天累計看手機時間”的中位數(shù)分別是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】葫蘆島市某高中進行一項調(diào)查:2012年至2016年本校學生人均年求學花銷 (單位:萬元)的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號 | 1 | 2 | 3 | 4 | 5 |
年求學花銷 | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
(1)求 關(guān)于 的線性回歸方程;
(2)利用(1)中的回歸方程,分析2012年至2016年本校學生人均年求學花銷的變化情況,并預測該地區(qū)2017年本校學生人均年求學花銷情況.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側(cè)面A1ADD1⊥底面ABCD,D1A=D1D= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(1)求證:A1O∥平面AB1C;
(2)求銳二面角A﹣C1D1﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F(xiàn)、G分別為EB和AB的中點.
(1)求證:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com