Sn是數(shù)列{an}的前n項(xiàng)和,則“Sn是關(guān)于n的二次函數(shù)”是“數(shù)列{an}為等差數(shù)列”的


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充分必要條件
  4. D.
    既不充分也不必要條件
D
分析:利用必要條件、充分條件與充要條件的概念及等差數(shù)列的性質(zhì)可得“Sn是關(guān)于n的二次函數(shù)”不能?“數(shù)列{an}為等差數(shù)列”,反之亦然,從而可得答案.
解答:不妨設(shè)Sn=n2-1,
則當(dāng)n=1時(shí),a1=S1=0,
當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-1,
顯然,當(dāng)n=1時(shí),a1=0≠1,
∴an=,即數(shù)列{an}不是等差數(shù)列,
也就是說(shuō),“Sn是關(guān)于n的二次函數(shù)”不能?“數(shù)列{an}為等差數(shù)列”,充分性不成立;
反之,“數(shù)列{an}為等差數(shù)列”,不妨取an=0,
則Sn=na1=0,Sn不是關(guān)于n的二次函數(shù),即必要性不成立,
故選D.
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì),考查必要條件、充分條件與充要條件的概念,考查理解與推理能力,考查特值法在選擇題中的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)列{an}滿足ak-1+ak+1≥2ak(k=2,3,…),則稱數(shù)列{an}為凸數(shù)列.
(Ⅰ)判斷數(shù)列an=(
3
2
)n(n∈N+)
是否是凸數(shù)列?
(Ⅱ)若數(shù)列{an}為凸數(shù)列,k、n、m∈N+,且k<n<m,
(i)求證:
am-an
m-n
an-ak
n-k

(ii)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,求證:
m-n
k
Sk+
n-k
m
Sm
m-k
n
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,Sn是數(shù)列{an}的前n項(xiàng)和,a1+a6+a11=4π,則sin(S11)的值為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶一模)已知Sn是數(shù)列{an}的前n項(xiàng)和,且a1=1,nan+1=2Sn(n∈N*)
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項(xiàng)an
(3)設(shè)數(shù)列{bn}滿足b1=
1
2
,bn+1=
1
ak
b
2
n
+bn
,求證:當(dāng)n≤k時(shí)有bn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)二模)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=1,an+1=an+2,則S5=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數(shù)列{an}的通項(xiàng)公an
(2)若記bn=(2n+1)•(
1Sn
+2)
,Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案