已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí)f(x)=ex+a,若f(x)在R上是單調(diào)函數(shù),則實(shí)數(shù)a的最小值是________.

-1
分析:由f'(x)=ex>0,知f(x)在(0,+∞)上為增函數(shù),故當(dāng)x=0時(shí),f(x)的最小值為1+a,當(dāng)x<0,f(x)=-e-x-a,為增函數(shù),當(dāng)x=0時(shí),f(x)max=-1-a,由此能求出實(shí)數(shù)a的最小值.
解答:f'(x)=ex>0,
f(x)在(0,+∞)上為增函數(shù),
當(dāng)x=0時(shí),f(x)的最小值為1+a,
當(dāng)x<0,
因?yàn)閒(x)為奇函數(shù),
∴f(x)=-e-x-a,x<0,
f(x)為增函數(shù),
當(dāng)x=0時(shí),
f(x)max=-1-a,
∵f(x)是增函數(shù),
∴-1-a≤1+a
解得a≥-1.
故實(shí)數(shù)a的最小值是-1.
點(diǎn)評(píng):本題考查函數(shù)的圖象和性質(zhì)的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意函數(shù)的奇偶性和單調(diào)性的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對(duì)所有f'(x)=0,任意x=-
1
2
恒成立,求實(shí)數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊(cè)答案