分析 (I)由已知中橢圓通徑的端點坐標(biāo),構(gòu)造方程組,可得a,b的值,進(jìn)而可得橢圓C的方程;
(II)經(jīng)過點P(1,0)的直線l可設(shè)為x=my+1,
(i)設(shè)A(x1,y1),B(x2,y2),聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理,可得y1+y2=$\frac{-2m}{{m}^{2}+4}$,y1y2=$\frac{-3}{{m}^{2}+4}$,由橢圓的右頂點為E(2,0),可得:k1•k2=$\frac{{y}_{1}}{{x}_{1}-2}$•$\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{{y}_{1}•{y}_{2}}{({my}_{1}-1)({my}_{2}-1)}$=$\frac{{y}_{1}•{y}_{2}}{{{m}^{2}y}_{1}•{y}_{2}-{m({y}_{1}+y}_{2})+1}$,進(jìn)而得到答案;
(ii)由題意得:△OAB面積S=$\frac{1}{2}$×1×|y1-y2|,結(jié)合對勾函數(shù)的圖象和性質(zhì),可得△OAB面積的最大值.
解答 解:(I)由已知中過F1于x軸垂直的直線與橢圓C相交,其中一個交點為M(-$\sqrt{3}$,$\frac{1}{2}$).
可得:c=$\sqrt{3}$,$\frac{^{2}}{a}$=$\frac{1}{2}$,a2-b2=c2,
解得:a=2,b=1,
∴橢圓C的方程為:$\frac{{x}^{2}}{4}+{y}^{2}=1$;…3分
(II)設(shè)A(x1,y1),B(x2,y2)
證明:(i)∵直線l過定點(1,0),設(shè)x=my+1,
由$\left\{\begin{array}{l}\frac{{x}^{2}}{4}+{y}^{2}=1\\ x=my+1\end{array}\right.$得:(m2+4)y2+2my-3=0,…5分
∴y1+y2=$\frac{-2m}{{m}^{2}+4}$,y1y2=$\frac{-3}{{m}^{2}+4}$,
∵右頂點為E(2,0),
∴k1•k2=$\frac{{y}_{1}}{{x}_{1}-2}$•$\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{{y}_{1}•{y}_{2}}{({my}_{1}-1)({my}_{2}-1)}$=$\frac{{y}_{1}•{y}_{2}}{{{m}^{2}y}_{1}•{y}_{2}-{m({y}_{1}+y}_{2})+1}$=$\frac{\frac{-3}{{m}^{2}+4}}{{{m}^{2}•\frac{-3}{{m}^{2}+4}}_{1}-m•\frac{-2m}{{m}^{2}+4}+1}$=-$\frac{3}{4}$,
∴k1•k2為定值;…8分
(ii)由題意得:
△OAB面積S=$\frac{1}{2}$×1×|y1-y2|=$\frac{1}{2}$•$\frac{\sqrt{(2m)^{2}+12({m}^{2}+4)}}{{m}^{2}+4}$=$\frac{2\sqrt{{m}^{2}+3}}{{m}^{2}+4}$,
令t=$\sqrt{{m}^{2}+3}$,t≥$\sqrt{3}$,
則S=$\frac{2t}{{t}^{2}+1}$=$\frac{2}{t+\frac{1}{t}}$≤$\frac{2}{\sqrt{3}+\frac{1}{\sqrt{3}}}$=$\frac{\sqrt{3}}{2}$,
故△OAB面積的最大值為$\frac{\sqrt{3}}{2}$…12分
點評 本題考查的知識點是橢圓的方程,橢圓的性質(zhì),直線與橢圓的位置關(guān)系,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 10 | C. | 9 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}π$ | B. | $\frac{{\sqrt{3}}}{2}π$ | C. | $\sqrt{3}π$ | D. | $2\sqrt{3}π$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com