在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且滿足

(Ⅰ)求角C的大小;

(Ⅱ)求的最大值,并求取得最大值時(shí)角A的大。

 

【答案】

(Ⅰ) . (Ⅱ)的最大值為2,此時(shí)A=

【解析】

試題分析:(Ⅰ)由正弦定理得

因?yàn)?<A<π,0<C<π.

所以sinA>0. 從而sinC=cosC.

又cosC≠0,所以tanC=1,則.                 5分

(Ⅱ)由(Ⅰ)知B=-A. 于是

=

=

=

因?yàn)?<A<,所以,

所以當(dāng),即A=時(shí),

取最大值2.

綜上所述,的最大值為2,此時(shí)A=.        9分

考點(diǎn):正弦定理的應(yīng)用,和差倍半的三角函數(shù),三角函數(shù)的圖象和性質(zhì)。

點(diǎn)評(píng):中檔題,三角形中的問題,往往利用兩角和與差的三角函數(shù)公式進(jìn)行化簡,利用正弦定理、余弦定理建立邊角關(guān)系。本題綜合性較強(qiáng),綜合考查兩角和與差的三角函數(shù),正弦定理的應(yīng)用,三角函數(shù)的圖象和性質(zhì)。涉及角的較小范圍,易于出錯(cuò)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案